Skip to main content

High-Voltage Activated Ca2+ Channel

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

Abstract

Calcium channels are part of the signal system which is vital for intercellular communication in higher multicellular organisms. They transduce electrical or hormonal signals into a chemical second messenger, namely calcium. The cytosolic calcium concentration controls numerous cellular functions by binding to distinct calcium receptor binding proteins such as calmodulin, troponin, or calcium-activated potassium channels. Voltage-dependent calcium channels are of particular interest since their opening or closing determinates the cellular calcium concentration of many cells. In the normal heart they are essential to the generation of normal cardiac rhythm, to impulse propagation through the atrioventricular node, and to contraction in atrial and ventricular muscle. In vascular smooth muscle calcium channels provide part of the calcium that controls smooth muscle contraction and vascular tone. In skeletal muscle they are an essential part of the tubular excitation-contraction coupling mechanism. In neuronal and neuroendocrine cells they are essential for neurotransmitter release (for recent reviews see Bertolino and Llinas 1992; Brown and Birnbaumer 1990; Miller 1992; Rios et al. 1992; Trautwein and Hescheler 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bertolino M, Llinás R (1992) The central role of voltage-activated and receptor operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32:399–421.

    Article  PubMed  CAS  Google Scholar 

  • Biel M, Hullin R, Freundner S, Singer D, Dascal N, Flockerzi V, Hofmann F (1991) Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels. Eur J Biochem 200:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Biel M, Ruth P, Bosse E, Hullin R, Stümmer W, Flockerzi V, Hofmann F (1990) Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett 269:409–412.

    Article  PubMed  CAS  Google Scholar 

  • Bosse E, Bottlender R, Kleppisch T, Hescheler J, Welling A, Hofmann F, Flockerzi V (1992) Stable and functional expression of the calcium channel α1 subunit from smooth muscle in somatic cell lines. EMBO J 11 2033–2038.

    PubMed  CAS  Google Scholar 

  • Bosse E, Regulla S, Biel M, Ruth P, Meyer HE, Flockerzi V, Hofmann F (1990) The cDNA and deduced amino acid sequence of the γ subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lett 267:153–156.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Birnbaumer L (1990) Ionic channels and their regulation by G protein subunits. Annu Rev Physiol 52:197–213.

    Article  PubMed  CAS  Google Scholar 

  • Cavalié A, Allen TJA, Trautwein W (1991) Role of the GTP-binding protein Gs in the β-adrenergic modulation of cardiac Ca channels. Pflügers Arch 419:433–443.

    Article  PubMed  Google Scholar 

  • De Jongh KS, Merrick DK, Catterall WA (1989) Subunits of purified calcium channels: a 212-kDa form of α1 and partial amino acid sequence of a phosphorylation site of an independent β subunit. Proc Natl Acad Sci USA 86:8585–8589.

    Article  PubMed  Google Scholar 

  • De Jongh KS, Warner C, Catterall WA (1990) Subunits of purified calcium channels; α2 and δ are encoded by the same gene. J Biol Chem 265:14738–14741.

    PubMed  Google Scholar 

  • De Jongh KS, Warner C, Colvin AA, Catterall WA (1991) Characterization of the two size forms of the α1 subunit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci USA 88:10778–10782.

    Article  PubMed  Google Scholar 

  • Diebold RJ, Koch WJ, Ellinor PT, Wang J-J, Muthuchamy M, Wieczorek DF, Schwartz A (1992) Mutually exclusive exon splicing of the cardiac calcium channel α1 subunit gene generates developmentally regulated isoforms in the rat heart. Proc Natl Acad Sci USA 89:1497–1501.

    Article  PubMed  CAS  Google Scholar 

  • Dubel SJ, Starr TVB, Hell J, Ahlijanian MA, Enyeart JJ, Catterall WA, Snutch TP (1992) Molecular cloning of the α-1 subunit of an ω-conotoxin-sensitive calcium channel. Proc Natl Acad Sci USA 89:5058–5062.

    Article  PubMed  CAS  Google Scholar 

  • Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT, Campbell KP, McKenna E, Koch WJ, Hui A, Schwartz A, Harpold MM (1988) Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel. Science 241:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  • Flockerzi V, Oeken HJ, Hofmann F, Pelzer D, Cavalié A, Trautwein W (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 323:66–68.

    Article  PubMed  CAS  Google Scholar 

  • Garcia J, Gamboa-Aldeco R, Stefani E (1990) Charge movement and calcium currents in skeletal muscle fibers are enhanced by GTPγS. Pflügers Arch 417:114–116.

    Article  PubMed  CAS  Google Scholar 

  • Guy HR, Conti F (1990) Pursuing the structure and function of voltage-gated channels. TiNS 13:201–206.

    PubMed  CAS  Google Scholar 

  • Hamilton S, Codina J, Hawkes MJ, Yatani A, Sawada T, Strickland FM, Froehner SC, Spiegel AM, Toro L, Stefani E, Birnbaumer L, Brown AM (1991) Evidence for direct interaction of Gsα with the Ca2+ channel of skeletal muscle. J Biol Chem 266:19528–19535.

    PubMed  CAS  Google Scholar 

  • Hofmann F, Flockerzi V, Nastainczyk W, Ruth P, Schneider T (1990) The molecular structure and regulation of muscular calcium channels. Curr Top Cell Regulation 31:223–239.

    CAS  Google Scholar 

  • Hui A, Ellinor PT, Krizanova O, Wang J-J, Diebold RJ, Schwartz A (1991) Molecular cloning of multiple subtypes of a novel rat brain isoform of the α1 subunit of the voltage-dependent calcium channel. Neuron 7:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Hullin R, Singer-Lahat D, Freichel M, Biel M, Dascal N, Hofmann F, Flockerzi V (1992) Calcium channel β subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. EMBO J 11:885–890.

    PubMed  CAS  Google Scholar 

  • Hymel L, Striessnig J, Glossmann H, Schindler H (1988) Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc Natl Acad Sci USA 85:4290–4294.

    Article  PubMed  CAS  Google Scholar 

  • Itagaki K, Koch WJ, Bodi I, Klöckner U, Slish DF, Schwartz A (1992) Native-type DHP-sensitive calcium channel currents are produced by cloned rat aortic smooth muscle and cardiac α1 subunits expressed in Xenopus laevis oocytes and are regulated by α2-and β-subunits. FEBS Lett 297:221–225.

    Article  PubMed  CAS  Google Scholar 

  • Jay SD, Ellis SB, McCue AF, Williams ME, Vedvick TS, Harpold MM, Campbell K (1990) Primary structure of the γ subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 248:490–492.

    Article  PubMed  CAS  Google Scholar 

  • Jay SD, Sharp AH, Kahl StD, Vedvick TS, Harpold MM, Campbell KP (1991) Structural characterization of the dihydropyridine-sensitive calcium channel α2-subunit and the associated δ peptides. J Biol Chem 266:3287–3293.

    PubMed  CAS  Google Scholar 

  • Kameyama M, Hescheler J, Hofmann F, Trautwein W (1986) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407:123–128.

    Article  PubMed  CAS  Google Scholar 

  • Kass RS, Arena JP, Chin S (1991) Block of L-type calcium channels by charged dihydropyridines. J Gen Physiol 98:63–75.

    Article  PubMed  CAS  Google Scholar 

  • Kim HL, Kim H, Lee P, King RG, Chin HR (1992) Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel alpha-2 subunit. Proc Natl Acad Sci USA 89:3251–3255.

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Wei X, Ruth P, Perez-Reyes E, Flockerzi V, Hofmann F, Birnbaumer L (1990) Studies on the structural requirements for the activity of the skeletal muscle dihydropyridine receptor/slow Ca2+ channel. J Biol Chem 265:11858–11863.

    PubMed  CAS  Google Scholar 

  • Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353:43–49.

    Article  PubMed  CAS  Google Scholar 

  • Klöckner U, Itagaki K, Bodi I, Schwartz A (1992) β-Subunit expression is required for cAMP-dependent increase of cloned cardiac and vascular calcium channel currents. Pflügers Arch 420:413–415.

    Article  PubMed  Google Scholar 

  • Koch WJ, Ellinor PT, Schwartz A (1990) cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. J Biol Chem 265:17786–17791.

    PubMed  CAS  Google Scholar 

  • Lacerda AE, Kim HS, Ruth P, Perez-Reyes E, Flockerzi V, Hofmann F, Birnbaumer L, Brown AM (1991) Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352:527–530.

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Seagar MJ, Takahashi M, Catterall W (1990) Cyclic AMP-dependent phosphorylation of two size forms of α1 subunits of L-type calium channels in rat skeletal muscle cells. J Biol Chem 34:20839–20848.

    Google Scholar 

  • Lory P, Varadi G, Schultz D, Schwartz A (1992) Subunit composition regulates the skeletal L-type Ca Channel. FASEB J 6:A406.

    Google Scholar 

  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233.

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ (1992) Voltage-sensitive Ca2+ channels. J Biol Chem 267:1403–1406.

    PubMed  CAS  Google Scholar 

  • Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME (1992) P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355:827–830.

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Friedrich T, Kim M-S, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402.

    Article  PubMed  CAS  Google Scholar 

  • Mundina-Weilenmann C, Chang CF, Gutierrez LM, Hosey MM (1991) Demonstration of the phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of the channels after reconstitution. J Biol Chem 266:4067–4073.

    PubMed  CAS  Google Scholar 

  • Nakayama H, Taki M, Striessnig J, Glossmann H, Catterall WA, Kanaoka Y (1991) Identification of 1,4-dihydropyridine binding regions within the α1 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. Proc Natl Acad Sci USA 88:9203–9207.

    Article  PubMed  CAS  Google Scholar 

  • Norman RI, Burgess AJ, Allen E, Harrison TM (1987) Monoclonal antibodies against the 1,4-dihydropyridine receptor associated with voltage-sensitive Ca2+ channels detect similar polypeptides from a variety of tissues and species. FEBS Letters 212:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Nunoki K, Florio V, Catterall WA (1989) Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc Natl Acad Sci 86:6816–6820.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Castellano A, Kim HS, Bertrand P, Baggstrom E, Lacerda A, Wei X, Birnbaumer L (1992) Cloning and expression of cardiac/brain β subunit of the L-type calcium channel. J Biol Chem 267:1792–1797.

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Kim HS, Lacerda AE, Home W, Wei X, Rampe D, Campbell KP, Brown AM, Birnbaumer L (1989) Induction of calcium currents by the expression of the α1 subunit of the dihydropyridine receptor from skeletal muscle. Nature 340:233–236.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Wei X, Castellano A, Birnbaumer L (1990) Molecular diversity of L-type calcium channel. Evidence for alternative splicing of the transcripts of three non-allelic genes. J Biol Chem 265:20430–20436.

    PubMed  CAS  Google Scholar 

  • Pragnell M, Sakamoto J, Jay SD, Campbell KP (1991) Cloning and tissue-specific expression of the brain calcium channel β-subunit. FEBS Lett 291:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Regulla S, Schneider T, Nastainczyk W, Meyer HE, Hofmann F (1991) Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel α1 subunit. EMBO J 10:45–49.

    PubMed  CAS  Google Scholar 

  • Rios E, Pizarro G, Stefani E (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu Rev Physiol 54:251–275.

    Article  Google Scholar 

  • Röhrkasten A, Meyer HE, Nastainczyk W, Sieber M, Hofmann F (1988) cAMP-dependent protein kinase rapidly phosphorylates serine-687 of the skeletal muscle receptor for calcium channel blockers. J Biol Chem 263:15325–15329.

    PubMed  Google Scholar 

  • Rotman EI, Florio V, Lai Y, De Jongh D, Catterall WA (1992) Specific phosphorylation of a C-terminal site on the 212kDa form of the α1 subunit of the skeletal muscle calcium channel by cAMP-dependent protein kinase FASEB J 6:A246.

    Google Scholar 

  • Ruth P, Röhrkasten A, Biel M, Bosse E, Regulla S, Meyer HE, Flockerzi V, Hofmann F (1989) Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 245:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Regulla S, Hofmann F (1991) The devapamil-binding site of the purified skeletal muscle receptor for organic-calcium channel blockers is modulated by micromolar and millimolar concentrations of Ca2+ Eur J Biochem 200:245–253.

    Article  PubMed  CAS  Google Scholar 

  • Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson JH, Bell GI (1992) Cloning of the α1 subunit of a voltage-dependent calcium channel expressed in pancreatic β cells. Proc Natl Acad Sci USA 89:584–588.

    Article  PubMed  CAS  Google Scholar 

  • Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N (1991) The roles of the subunits in the function of the calcium channel. Science 253:1553–1557.

    Article  PubMed  CAS  Google Scholar 

  • Snutch TP, Leonard JP, Gilbert MM, Lester HA, Davidson N (1990) Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sci USA 87:3391–3395.

    Article  PubMed  CAS  Google Scholar 

  • Snutch TP, Tomlinson WJ, Leonard JP, Gilbert MM (1991) Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 7:45–57.

    Article  PubMed  CAS  Google Scholar 

  • Starr TVB, Prystay W, Snutch TP (1991) Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 88:5621–5625.

    Article  PubMed  CAS  Google Scholar 

  • Staudinger R, Knaus H-G, Glossmann H (1991) Positive heterotopic allosteric regulators of dihydropyridine binding increase the Ca2+ affinity of the L-type Ca2+ channel. J Biol Chem 266:10787–10795.

    PubMed  CAS  Google Scholar 

  • Striessnig J, Glossmann H, Catterall WA (1990) Identification of a phenylalkylamine binding region within the α1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sci USA 87:9108–9112.

    Article  PubMed  CAS  Google Scholar 

  • Striessnig J, Murphy BJ, Catterall WA (1991) Dihydropyridine receptor of L-type Ca2+ channels: identification of binding domains for [3H] (+)-PN200-110 and [3H]azidopine within the α1 subunit. Proc Natl Acad Sci USA 88:10769–10773.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Brett AA, Numa S, Beam KG (1991) Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 352:800–803.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318.

    Article  PubMed  CAS  Google Scholar 

  • Trautwein W, Hescheler J (1990) Regulation of cardiac L-type calcium current by phosphorylation and G-proteins. Annu Rev Physiol 52:257–274.

    Article  PubMed  CAS  Google Scholar 

  • Varadi G, Lory P, Schultz D, Varadi M, Schwartz A (1991) Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel. Nature 352:159–162.

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Perez-Reyes E, Lacerda AE, Schuster G, Brown AM, Birnbaumer L (1991) Heterologous regulation of the cardiac Ca2+ channel α1 subunit by skeletal muscle β and γ subunits. J Biol Chem 266:21943–21947.

    PubMed  CAS  Google Scholar 

  • Welling A, Felbel J, Peper K, Hofmann F (1992a) Hormonal regulation of calcium current in freshly isolated airway smooth muscle cells. Am J Physiol 262:L351–L359.

    PubMed  CAS  Google Scholar 

  • Welling A, Bosse E, Ruth P, Bottlender R, Flockerzi V, Hofmann F (1992b) Expression and regulation of cardiac and smooth muscle calcium channels. J J Pharmacol 58Suppl-II 1258p–1262p.

    Google Scholar 

  • Welling A, Bosse E, Cavalie A, Bottlender R, Ludwig A, Nastainczyk W, Flockerzi V, Hofmann F (1993) Stable co-expression of Calcium Channel α1, β and α2, δ Subunits in a Somatic Cell Line. J Physiol, in Press.

    Google Scholar 

  • Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM (1992a) Structure and functional expression of α1, α2, and β subunits of a novel human neuronal calcium channel subtype. Neuron 8:71–84.

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Brust PF, Feldman DH, Patti S, Simerson S, Maroufi A, McCue AF, Velicelebi G, Ellis SB, Harpold MM (1992b) Structure and functional expression of an ω-conotoxin-sensitive human N-type calcium channel. Science 257:389–395.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofmann, F. et al. (1993). High-Voltage Activated Ca2+ Channel. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics