Skip to main content

Molecular Diversity of Mammalian Adenylyl Cyclases: Functional Consequences

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

Abstract

Adenylyl cyclase (EC 4.6.1.1) converts MgATP into 3′,5′-cyclic AMP (cAMP) and pyrophosphate. Since the initial characterization of the enzyme by Sutherland and coworkers in 1962 adenylyl cyclase activities have been identified in organisms ranging from bacteria to man. The structure and regulation of these adenylyl cyclase enzymes as well as the regulatory role of the cAMP produced varies considerably across this evolutionary distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asano T, Pedersen SE, Scott CW, Ross EM (1984) Reconstitution of catecholamine-stimulated binding of guanosine-5′-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Biochemistry 23:5460–5467.

    Article  PubMed  CAS  Google Scholar 

  • Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406.

    Article  PubMed  CAS  Google Scholar 

  • Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na++K+) ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347:386–388.

    Article  PubMed  CAS  Google Scholar 

  • Bell JD, Buxton ILO, Brunton LL (1985) Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. Putative effects of C kinase on the αs-GTP-catalytic subunit interaction. J Biol Chem 260:2625–2628.

    PubMed  CAS  Google Scholar 

  • Boyajian CL, Garritsen A, Cooper DMF (1991) Bradykinin stimulates [Ca2+] mobilization in NCB-20 cells leading to direct inhibition of adenylyl cyclases: a novel mechanism for inhibition of cAMP production. J Biol Chem 266:4995–5003.

    PubMed  CAS  Google Scholar 

  • Braun TD, Dods RF (1975) Devolopment of a Mn2+ sensitive, soluble adenylate cyclase in rat testis. Proc Natl Acad Sci USA 72:1097–1101.

    Article  PubMed  CAS  Google Scholar 

  • Bray P, Carter A, Simons C, Guo V, Puckett C, Kamholz J, Speigel A, Nirenberg M (1986) Human cDNA clones for four species of Gαs signal transduction protein. Proc Natl Acad Sci USA 83:8893–8897.

    Article  PubMed  CAS  Google Scholar 

  • Brostrom CO, Huang Y, Breckenridge BM, Woolf DJ (1975) Identification of a calcium binding protein as the calcium dependent regulator of the brain adenylyl cyclase. Proc Natl Acad Sci USA 72:64–68.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KK, Boyajian CL, Cooper DMF (1992) The effects of Ca2+ and calmodulin on adenylyl cyclase activity in plasma membranes of neuronal and non neuronal cells. Cell Calcium 13:107–121.

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Selinger Z (1978) Mechanism of adenylate cyclase stimulation through the β-adrenergic induced displacement of GTP for GDP. Proc Natl Acad Sci USA 75:4155–4159.

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY, Bradham LD, Lynch TJ, Lin YM, Tallant EA (1975) Protein activator of cyclic 3′:5′ — nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem Biophys Res Commun 66:1055–1062.

    Article  PubMed  CAS  Google Scholar 

  • Choi E-J, Wong ST, Hinds TR, Storm DR (1992a) Calcium and muscarinic stimulation of type 1 adenylyl cyclase in whole cells. J Biol Chem 267:12440–12442.

    PubMed  CAS  Google Scholar 

  • Choi E-J, Xia Z, Storm DR (1992b) Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31:6492–6498.

    Article  PubMed  CAS  Google Scholar 

  • Clark RB, Goka TJ, Green DA, Barber R, Butcher RW (1982) Differences in the forskolin activation of adenylate cyclases in wild typand variant lymphoma cells. Mol Pharmacol 22:609–613.

    PubMed  CAS  Google Scholar 

  • Feinstein PG, Schrader KA, Bakalyar HA, Tang WJ, Kuprinski J, Gilman AG, Reed RR (1991) Molecular cloning and characterization of a Ca2+/ calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci USA 88:10173–10177.

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Gilman AG (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA 88:10178–10182.

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579.

    Article  PubMed  CAS  Google Scholar 

  • Graziano MP, Freissmuth M, Gilman AG (1987) Expression of G in E. coli: purification and properties of two forms of the protein. J Biol Chem 264:409–418.

    Google Scholar 

  • Harrison JK, Hewlett HGK, Gnegy ME (1989) Regulation of the calmodulin sensitive adenylyl cyclase by the stimulatory G protein Gs. J Biol Chem 264:15880–15885.

    PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Sekura RD, Codina J, Iyengar R, Manclark CR, Birnbaumer L (1983) Stimulation and Inhibition of adenylyl cyclases is mediated by distinct regulatory proteins. Nature 302:702–709.

    Article  Google Scholar 

  • Iyengar R, Birnbaumer L (1990) Overview. In: Iyengar R, Birnbaumer L (eds) G proteins. Academic, San Diego, pp 1–14.

    Google Scholar 

  • Ishikawa Y, Katsushika S, Chen L, Halnon NJ, Kawabe J, Homey CJ (1992) Isolation and characterization of a novel cardiac adenylyl cyclase cDNA. J Biol Chem 267:13553–13557.

    PubMed  CAS  Google Scholar 

  • Jakobs KH, Aktories K, Schultz G (1983) A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature 303:177–178.

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Reed RR (1987) Molecular cloning of five GTP binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262:14241–14249.

    PubMed  CAS  Google Scholar 

  • Jones DT, Masters SB, Bourne HR, Reed RR (1990) Biochemical characterization of three stimulatory G proteins. The large and the small forms of Gs and the olfactory specific G protein Golf. J Biol Chem 262:2671–2676.

    Google Scholar 

  • Johnson RA, Yeung S-MH, Stubner D, Bushfield M, Shoshani I (1989) Cation and structural requirements for P-site mediated inhibition of adenylate cyclase. Molecular Pharmacology 35:681–688.

    PubMed  CAS  Google Scholar 

  • Karbon EW, Enna SJ (1985) Characterization of the relationship between γ-aminobutyric acid-B agonists and transmitter coupled cyclic nucleotide generating systems in rat brain. Molecular Pharmacology 27:53–59.

    PubMed  CAS  Google Scholar 

  • Katada T, Northup JK, Bokoch GM, Ui M, Gilman AG (1984) The inhibitory guanine nucleotide component of adenylyl cyclase: subunit dissociation and guanine nucleotide dependent hormonal inhibition. J Biol Chem 259:3578–3585.

    PubMed  CAS  Google Scholar 

  • Katada T, Kasukabe K, Oinuma M, Ui M (1987) A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP binding proteins. Calmodulin dependent inhibition of the cyclase catalyst by the βγ-subunits of GTP binding proteins. J Biol Chem 262:11897–11900.

    PubMed  CAS  Google Scholar 

  • Katsushika S, Chen L, Kawabe J-I, Nilakantan R, Halnon NJ, Homcy CJ, Ishikawa Y (1992) Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci USA 89:8774–8778.

    Article  PubMed  CAS  Google Scholar 

  • Koesling D, Boheme E, Schultz G (1991) Guanylyl cyclases, a growing family of signal transducing enzymes. FASEB J 5:2785–2791.

    PubMed  CAS  Google Scholar 

  • Kruprinski J, Coussen F, Bakalyar HA, Tang W-J, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG (1989) Adenylyl cyclase amino acid sequence: possible channel or transporter like structure. Science 244:1558–1564.

    Article  Google Scholar 

  • Kruprinski J, Lehman PC, Frankenfield CD, Zwaagstra, Watson PA (1992) Molecular diversity in adenylyl cyclase family. J Biol Chem 267 (in press).

    Google Scholar 

  • Kunkel MW, Freidman J, Shenolikar S, Clark RB (1989) Cell-free heterlogous desensitization of adenylyl cyclase in S49 cell membranes mediated by cAMP dependent kinase. FASEB J 3:2067–2074.

    PubMed  CAS  Google Scholar 

  • Levin LR, Han P-Y, Hwang PM, Feinstein PG, Davis RL, Randall RR(1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin responsive adenylyl cyclase. Cell 68:479–489.

    Article  PubMed  CAS  Google Scholar 

  • Linder ME, Ewald DA, Miller RJ, Gilman AG (1990) Purification and characterization of Go-α and three types of Gi-α after expression in E. coli. J Biol Chem 265:8243–8251.

    PubMed  CAS  Google Scholar 

  • Livingstone MS (1985) Genetic dissection of Drosophila adenylate cyclase. Proc Natl Acad Sci USA 82:5992–5996.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone MS, Sziber PP, Quinn WG (1984) Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Londos C, Salomon Y, Lin MC, Harwood JP, Schramm M, Wolff J, Rodbell M (1974) 5″-Guanylyl-imidodiphosphate, a potent activator of adenylyl cyclase systems in eukaryotic cells. Proc Natl Acad Sci USA 71:3087–3090.

    Article  PubMed  CAS  Google Scholar 

  • Mattera R, Graziano MP, Yatani A, Zhou Z, Graf R, Codina J, Birnbaumer L, Gilman AG, Brown AM (1989) Splice variants of the α-subunits of the G protein Gsactivate both adenylyl cyclases and calcium channels. Science 243:804–807.

    Article  PubMed  CAS  Google Scholar 

  • May DC, Ross EM, Gilman AG, Smigel MD (1985) Reconstitution of catecholamine stimulated adenylyl cyclase activity using three purified proteins. J Biol Chem 260:15829–15833.

    PubMed  CAS  Google Scholar 

  • Murphy GJ, Gawler DJ, Milligan G, Wakelam MJO, Houslay MD (1989) Glucagon induced desensitization of adenylate cyclase and stimulation of inositol phospholipid metabolism does not involve the inhibitory guanine nucleotide regulatory protein Giwhich is inactivated upon challenge of hepatocytes with glucagon. Biochemical J 259:191–197.

    CAS  Google Scholar 

  • Neer EJ (1978) Multiple forms of adenylyl cyclase. In: George WJ, Ignarro LJ (eds) Advances in cyclic nucleotide research. Raven, New York, vol 9, pp 69–83.

    Google Scholar 

  • Nelson CA, Seamon KB (1988) Binding of [3H] forskolin to solubilized preparation of adenylate cyclase. Life Sciences 42:1375–1383.

    Article  PubMed  CAS  Google Scholar 

  • Northup JK, Smigel MD, Sternweis PC, Gilman AG (1983) The subunits of the stimulatory regulatory component of adenylyl cyclase. Resolution of the 45000 Da (α) subunit. J Biol Chem 258:11361–11368.

    PubMed  CAS  Google Scholar 

  • Okamura N, Tajima Y, Onoe S, Sugita Y (1991) Purification of the bicarbonate sensitive sperm adenylyl cyclase by 4-acetamido-4″-isothiocyanostilbene-2,2″-disulfonic acid affinity chromatography. J Biol Chem 266:17754–17759.

    PubMed  CAS  Google Scholar 

  • Parma J, Stengel D, Gannage M-H, Poyard M, Barouki R, Hanoune J (1991) Sequence of a human brain adenylyl cyclase partial cDNA. Evidence for a consensus cyclase specific domain. Biochem Biophys Res Comm 179:455–462.

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer T, Metzger H (1982) 7-O-Hemisuccinyl-deacetyl forskolin-Sepharose: a novel affinity support for purification of adenylate cyclase. FEBS Letts 146:369–375.

    Article  CAS  Google Scholar 

  • Pfeuffer E, Dreher RM, Metzger H, Pfeuffer T (1985) Catalytic unit of adenylate cyclase; purification and identification by affinity cross linking. Proc Natl Acad Sci USA 82:3068–3090.

    Article  Google Scholar 

  • Premont RT, Iyengar R (1989) Heterologous desensitization of the liver adenylyl cyclase: analysis of the role of G proteins. Endocrinology 125:1151–1160.

    Article  PubMed  CAS  Google Scholar 

  • Premont RT, Chen J, Ma H-W, Ponnapalli M, Iyengar R (1992) Two members of a widely expressed subfamily of hormone stimulated adenylyl cyclases. Proc Natl Acad Sci USA 89 (in press).

    Google Scholar 

  • Premont RT, Jacobowitz O, Iyengar R (1992) Lowered responsiveness of the catalyst of adenylyl cyclase to stimulation by Gs in heterologous desensitization: a role for cAMP dependent phosphorylation. Endocrinology 131 (in press).

    Google Scholar 

  • Ross EM, Gilman AG (1977) Resolution of some components of adenylate cyclase necessary for catalytic activity. J Biol Chem 252:6966–6969.

    PubMed  CAS  Google Scholar 

  • Sattin A, Rall TW, Zanella J (1975) Regulation of cyclic adenosine 3′: 5′ monophosphate levels in guniea pig cerebral cortex by interaction of alpha adrenergic and adenosine receptor activity. J Pharmacol Exp Ther 192:22–32.

    PubMed  CAS  Google Scholar 

  • Schramm M, Rodbell M (1975) A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes. J Biol Chem 250:2232–2237.

    PubMed  CAS  Google Scholar 

  • Seamon KB, Daly JW (1981) Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem 256:9799–9801.

    PubMed  CAS  Google Scholar 

  • Seamon KB, Padgett W, Daly JW (1981) Forskolin: a unique diterpene activator of adenylate cyclase in membranes and intact cells. Proc Natl Acad Sci USA 78:3363–3367.

    Article  PubMed  CAS  Google Scholar 

  • Sibley DR, Jeffs RA, Daniel K, Nambi P, Lefkkowitz RJ (1986) Phorbol-ester treatment promotes enhanced adenylate cyclase activity in frog erythrocytes. Arch Biochem Biophys 244:373–381.

    Article  PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808.

    Article  PubMed  CAS  Google Scholar 

  • Simmoteit RR, Schulzki HD, Palm D, Mollner S, Pfeuffer T (1991) Chemical and functional analysis of components of adenylyl cyclase from human platelets treated with phorbol esters. FEBS Lett 249:189–194.

    Google Scholar 

  • Smigel MD (1986) Purification of the catalyst of adenylate cyclase. J Biol Chem 261:1976–1982.

    PubMed  CAS  Google Scholar 

  • Stengel D, Guenet L, Hanoune J (1982) Proteolytic solubilization of adenylyl cyclase from membranes deficient in regulatory component. J Biol Chem 257:10818–10826.

    PubMed  CAS  Google Scholar 

  • Stengel D, Parma J, Gannage MH, Roeckel N, Mattaei M-G, Barouki R, Hanoune J (1992) Different chromosomal localization of two adenylyl cyclase genes expressed in human brain. Human Genetics (in press).

    Google Scholar 

  • Sutherland EW, Rall TS (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091.

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TS, Menon T (1962) Adenyl cyclase I distribution, preparation properties. J Biol Chem 237:1077–1091.

    Google Scholar 

  • Tang W-J, Gilman AG (1991) Type specific regulation of adenylyl cyclase by G protein βγ-subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Tang W-J, Krupinski J, Gilman AG (1991) Expression and characterization of calmodulin activated adenylyl cyclase. J Biol Chem 266:8595–8603.

    PubMed  CAS  Google Scholar 

  • Wong Y-H, Conklin BR, Bourne HR (1992) Gz mediated cAMP accumulation. Science 255:339–342.

    Article  PubMed  CAS  Google Scholar 

  • Woolf J, Londos C, Cooper DMF (1981) Adenosine receptors and regulation of adenylate cyclase. In: Dumont JE, Greengard P, Robison AG (eds) Advances in cyclic nucleotide research. Raven Press N Y 14:199–214.

    Google Scholar 

  • Xia Z, Refsdal CD, Merchant KM, Dorsa DM, Storm DR (1991) Distribution of mRNA for cal modulin sensitive adenylyl cyclasein rat brain: expression in areas associated with learning and memory. Neuron 6:431–443.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimasa T, Sibley DR, Bouvier M, Lefkowitz RJ, Caron MG (1987) Cross-talk between cellular signalling pathways suggested by phorbolester induced adenylated cyclase phosphorylation. Nature 327:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Cooper DMF (1992) Cloning and expression of a Ca2+ inhibitable adenylyl cyclase from NCB 20 cells. Proc Natl Acad Sci USA 89:6716–6720.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Premont, R.T., Chen, J., Jacobowitz, O., Iyengar, R. (1993). Molecular Diversity of Mammalian Adenylyl Cyclases: Functional Consequences. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics