Skip to main content

Phosphorylation of Heterotrimeric G-Protein

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

  • 99 Accesses

Abstract

Many cell-surface receptors control the activity of their effector, signal-generating, systems through specific members of a family of guanine nucleotide-binding regulatory proteins (G-proteins) (Birnbaumer et al. 1988; Spiegel 1990). These are heterotrimeric species consisting of α, β and γ subunits. It is the α subunits which are used to define the particular G-protein, and these are responsible for interaction with both the receptor and signal generator as well as binding and hydrolysing GTP. Upon the interaction of an occupied receptor with an appropriate G-protein, it binds GTP, dissociates, and the GTP-bound α-subunit subsequently interacts with the effector system. The “turn-off” reaction is effected by the hydrolysis of GTP to GDP and the reassociation of the G-protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bell JD, Brunton LL (1986) Phorbol ester action on Gi function. J Biol Chem 261:12036–12041.

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Abramowitz J, Brown AM (1990) Insulin and its interactions with G proteins. Biochim Biophys Acta 1031:163–224.

    PubMed  CAS  Google Scholar 

  • Bushfield M, Murphy GJ, Lavan BE, Parker PJ, Hruby VJ, Milligan G, Houslay MD (1990a) Hormonal regulation of Gi-2 α-subunit phosphorylation in intact hepatocytes. Biochem J 268:449–457.

    PubMed  CAS  Google Scholar 

  • Bushfield M, Griffiths SL, Murphy GJ, Pyne NJ, Knowler JT, Milligan G, Parker PJ, Mollner S, Houslay MD (1990b) Diabetes-induced alterations in the expression, functioning and phosphorylation state of the inhibitory guanine nueleotide regulatory protein Gi-2 in hepatocytes. Biochem J 271:365–372.

    PubMed  CAS  Google Scholar 

  • Bushfield M, Pyne NJ, Houslay MD (1990c) Changes in the phosphorylation state for the inhibitory guanine nueleotide binding protein Gi-2 in hepatocytes from lean (Fa/Fa) and obese (fa/fa) Zucker rats. Eur J Biochem 192:537–542.

    Article  PubMed  CAS  Google Scholar 

  • Bushfield M, Lavan BE, Houslay MD (1991) Okadaic acid identifies a phosphorylation/dephosphorylation cycle controlling Gi-2. Biochem J 274:317–321.

    PubMed  CAS  Google Scholar 

  • Carlson KE, Brass LF, Manning DR (1989) Thrombin and phorbol esters cause the selective phosphorylation of a G-protein other than Gi in human platelest. J Biol Chem 264:13298–13305.

    PubMed  CAS  Google Scholar 

  • Choi EJ, Toscano WA (1988) Modulation of adenylate cyclase activity in human keratinocytes py protein kinase. CJ Biol Chem 263:17167–17172.

    CAS  Google Scholar 

  • Cole GM, Reed SI (1991) Pheromone-induced phosphorylation of a G-protein β subunit in S. cerevisiae is associated with an adaptive response to mating. Cell 64:703–716.

    Article  PubMed  CAS  Google Scholar 

  • Cross F, Hartwell LH, Jackson C, Konopka JB (1988) Conjugation in S. cerevisiae. Annu Rev Cell Biol 4:429–457.

    Article  PubMed  CAS  Google Scholar 

  • Crouch MF, Lapetina EG (1988) A role for Gi in control of thrombin receptor phospholipase C coupling in human platelets. J Biol Chem 263:3363–3371.

    PubMed  CAS  Google Scholar 

  • Daniel-Issakani S, Spiegel AM, Strulovic B (1989) Lipopolysaccharide response is linked to the GTP binding protein Gi-2 in the promonocytic cell line U937.

    Google Scholar 

  • Farndale RW, Wong SKF, Martin BR (1987) Activation of adenylyl cyclase in human platelets membranes by 5′-[βγ-imido]triphosphate is inhibited by cyclic AMP-dependent phosphoryltion. Biochem J 242:637–643.

    PubMed  CAS  Google Scholar 

  • Gawler D, Milligan G, Spiegel AM, Unson CG, Houslay MD (1987) Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes. Nature 327:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths SL, Knowler JT, Houslay MD (1990) Diabetes-induced changess in guanine nueleotide regulatory protein (G-protein) mRNA as detected using synthetic oligonucleotide probes. Eur J Biochem 193:367–374.

    Article  PubMed  CAS  Google Scholar 

  • Gunderson RE, Devreotes PN (1990) In vivo receptor-mediated phosphorylation of a G-protein in Dictyostelium. Science 248:591–593.

    Article  Google Scholar 

  • Houslay MD (1986) Insulin, glucagon and the receptor-mediated control of cyclic AMP concentrations in liver (Colworth Medal Lecture). Biochem Soc Trans 14:183–193.

    PubMed  CAS  Google Scholar 

  • Houslay MD (1989) Distict functional domains on the insulin receptor β-subunit: do they provide a molecular basis for “selective” insulin resistance. Trends Endocrinol Metabolism 1:83–99.

    Article  Google Scholar 

  • Houslay MD (1990a) Altered expression and functioning of guanine nueleotide regulatory proteins during growth, transformation, differentiation and in pathological states. In: Houslay MD, Milligan G (eds) G-proteins as mediators of cellular signalling processes. Molecular pharmacology of cell regulation, vol 1. Wiley, Chichester, pp 197–230.

    Google Scholar 

  • Houslay MD (1990b) Insulin and its interaction with the G-protein system. In: Birnbaumer L, Iyengar R, (eds) G-proteins. Academic, New York, pp 521–553.

    Google Scholar 

  • Houslay MD (1991a) Gi-2 is at the centre of an active phosphorylation/dephosphorylation cycle in hepatocytes: the fine-tuning of stimulatory and inhibitory inputs into adenylate cyclase in normal and diabetic states. Cellular Signalling 3:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD (1991b) ‘Cross-talk’: a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem 195:9–27.

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD (1992) G-protein linked receptors: a family probed by molecular cloning and mutagenesis procedures. Clin Endocrinol 36:525–534.

    Article  CAS  Google Scholar 

  • Houslay MD, Gawler DJ, Milligan G, Wilson A (1989) Multiple defects occur in the guanine nueleotide regulatory protein system in liver plasma membranes of obese (fa/fa) but not lean (Fa/Fa) Zucker rats: loss of functional Gi and abnormal Gs function. Cellular Signalling 1:9–22.

    Article  PubMed  CAS  Google Scholar 

  • Janssens PMW, Van Haastert PJM (1987) Microbiol Rev 51:396.

    PubMed  CAS  Google Scholar 

  • Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine nucleotide regulatory component and apparently suppresses its function in the hormonal inhibition of adenylyl cyclase. Eur J Biochem 151:431–437.

    Article  PubMed  CAS  Google Scholar 

  • Krupinski J, Rajaram R, Lakonuhok M, Benovic JL, Cerione RA (1988) Phosphorylation of G-proteins by the insulin receptor tyrosyl kinase. J Biol Chem 263:12333–12341.

    PubMed  CAS  Google Scholar 

  • Murphy GJ, Gawler DJ, Milligan G, Wakelam MJO, Pyne NJ, Houslay MD (1989) Glucagon desensitization of adenylate cyclase does not involve the inhibitory guanine nucleotide regulatory protein Gi which is inactivated upon challenge of hepatocytes with glucagon. Biochem J 259:191–197.

    PubMed  CAS  Google Scholar 

  • O’Brien RM, Houslay MD, Milligan G, Siddie K (1987) The insulin receptor tyrosyl kinase phosphorylates holomeric forms of the guanine nucleotide regulatory proteins Gi and Go. FEBS Lett 212:281–288.

    Article  PubMed  Google Scholar 

  • O’Brien RM, Siddie K, Houslay MD, Hall A (1987b) Interaction of the human insulin receptor with the ras oncogene product p21. FEBS Lett 217:253–259.

    Article  PubMed  Google Scholar 

  • O’Brien R, Houslay MD, Brindle NPG, Milligan G, Whittaker J, Siddie K (1989) Binding to GDP-agarose identifies a novel 60 kDa substrate for the insulin receptor tyrosyl kinase in mouse NIH-3T3 cells expressing high concentrations of the human insulin receptor. Biochem Biophys Res Commun 158:743–748.

    Article  PubMed  Google Scholar 

  • Pyne NJ, Murphy GJ, Milligan G, Houslay MD (1989) Treatment of intact hepatocytes with either the phorbol ester TPA or glucagon elicits the phosphorylation and functional inactivation of the inhibitory guanine nucleotide regulatory protein Gi. FEBS Lett 243:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Pyne NJ, Murphy GJ, Milligan G, Houslay MD (1989a) Treatment of intact hepatocytes with either the phorbol ester TPA or glucagon elicits the phosphorylation and functional inactivation of the inhibitory G-protein Gi. FEBS Lett 243:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Pyne NJ, Heyworth CM, Balfour NW, Houslay MD (1989b) Insulin affects the ability of Gi to be ADP-ribosylated but does not elicit its phosphorylation in intact hepatocytes. Biochem Biophys Res Commun 165:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Pyne NJ, Freissmuth M, Palmer S (1992) Phosphorylation of the spliced variant forms of the recombinant guanine nucleotide-binding regulatory protein Gs by protein kinase C. Biochem J (in press).

    Google Scholar 

  • Rothenberg PL, Kahn R (1988) Insulin alters the ADP-ribosylation of Gi by pertussis toxin. J Biol Chem 263:15546–15552.

    PubMed  CAS  Google Scholar 

  • Sagi-Eisenberg R (1989) Phosphorylation of Gi. Trends Biochem Sci 14:355–357.

    Article  PubMed  CAS  Google Scholar 

  • Sauvage C, Rumigny JF, Maitre M (1991) Purification and characterisation of G-proteins from human braine: modification of GTPase activity upon phosphorylation. Mol Cell Biochem 107:65–77.

    Article  PubMed  CAS  Google Scholar 

  • Spence S, Houslay MD (1989) The local anaesthetic benzyl alcohol attenuates the alpha2-adrenoceptor-mediated inhibition of human platelet adenylate cyclase stimulated by PGE1 but not that stimulated by forskolin. Biochem J 264:483–488.

    PubMed  CAS  Google Scholar 

  • Spiegel AS (1990) Structure and identification of G-proteins. In: Houslay MD, Milligan G (eds) G-proteins as mediators of cellular signalling processes. Molecular pharmacology of cell regulation, vol 1. Wiley, Chichester, pp 15–30.

    Google Scholar 

  • Stone DE, Reed SI (1990) G protein mutations that alter the pheromone response in S. cerevisiae. Mol Cell Biol 10:4439–4446.

    PubMed  CAS  Google Scholar 

  • Strassheim D, Milligan G, Houslay MD (1990) Diabetes abolishes the GTP-but not receptor-dependent inhibitory function of Gi on adipocyte adenylate cyclase activity. Biochem J 266:521–526.

    PubMed  CAS  Google Scholar 

  • Valentine-Braun KA, Northup JK, Hollenberg MD (1986) Epidermal growth factor-mediated phosphorylation of a 35 kDa substate in human placental membranes: relationship to the β subunit of G-proteins. Proc Natl Acad Sci USA 83:236–240.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Imaizumi T, Misaka N, Iwakura K, Yoshida H (1988) Effects of phosphorylation of inhibitory GTP-binding protein by cAMP-dependent protein kinase on its ADP-ribosylation by pertussis toxin, islet activating protein. FEBS Lett 236:372–374.

    Article  PubMed  CAS  Google Scholar 

  • White TE, Lacal JC, Reep B, Fischer TH, Lapetina EG, White III GC (1990) Thrombolamban, the 22 kDa platelet substrate of cAMP-dependent protein kinase is immunologically homologous with the ras family of GTP-binding proteins. Proc Natl Acad Sci USA 87:758–762.

    Article  PubMed  CAS  Google Scholar 

  • Yatomi Y, Arata Y, Tada S, Kume S, Ui M (1992) Phosphorylation of the inhibitory guanine nucleotide regulatory protein as a possible mechanism of inhibition by protein kinase C of agonsist-induced Ca2+ mobilization in human platelets. Eur J Biochem 205:1003–1009.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Houslay, M.D. (1993). Phosphorylation of Heterotrimeric G-Protein. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics