Skip to main content

Protein and Gene Structure and Regulation of NADPH-Cytochrome P450 Oxidoreductase

  • Chapter
Cytochrome P450

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 105))

Abstract

The enzyme NADPH-cytochrome P450 oxidoreductase (NADPH: ferrihemoprotein oxidoreductase, E.C. 1.6.2.4, hereafter referred to as reductase) is a component of the microsomal mixed function oxidase system, functioning in the endoplasmic reticulum (Williams and Kamin 1962; Phillips and Langdon 1962) and nuclear membrane (Kasper 1971) to catalyze electron transfer from NADPH to cytochrome P450 (Lu and Coon 1968). This 78-kDa flavin mononucleotide (FMN)- and flavin adenine dinucleotide (FAD)-containing (Iyanagi and Mason 1973) flavoprotein can also reduce other microsomal proteins, such as cytochrome b 5 (Enoch and Strittmatter 1979), heme oxygenase (Schacter et al. 1972), and fatty acid elongase (Ilan et al. 1981), as well as nonphysiologic electron acceptors such as cytochrome c, ferricyanide, menadione, and dichlorophenolindophenol (Williams and Kamin 1962). Reductase-catalyzed redox cycling of antitumor anthracycline compounds is a factor in the antitumor activity and toxicity of these compounds (Bachur et al. 1978, 1979), while electron transfer to mitomycin C produces the active form of this antitumor compound (Keyes et al. 1984). in conjunction with EDTA-Fe2+, cytochrome P450 or O2 , the reductase can initiate microsomal lipid peroxidation (Pederson et al. 1973; reviewed by Sevanian et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bachur NR, Gordon SL, Gee MV (1978) A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res 38: 1745–1750

    PubMed  CAS  Google Scholar 

  • Bachur NR, Gordon SL, Gee MV, Kon H (1979) NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc Natl Acad Sci USA 76: 954–957

    Article  PubMed  CAS  Google Scholar 

  • Balakrishnan G, Ramachandran M, Banerjee BD, Hussain QZ (1985) Effect of dietary protein, dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane ( HCH) on hepatic microsomal enzyme activity in rats. Br J Nutr 54: 563–566

    Google Scholar 

  • Barry M, Duenas-Laita A, Mathuna PM, Feely J (1987) Increase in renal cytochrome P-450 and NADPH cytochrome c reductase activity following drug inhibition of hepatic monooxygenase activity. Biochem Pharmacol 36: 768–769

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens PIH, Bonants PJM, Muller F, Visser AJWG (1989) Time-resolved fluorescence spectroscopy of NADPH-cytochrome P-450 reductase: demonstration of energy transfer between the two prosthetic groups. Biochemistry 28: 8416–8425

    Article  PubMed  CAS  Google Scholar 

  • Benveniste I, Lesot A, Hasenfratz M-P, Durst F (1989) Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants. Biochem J 259: 847–853

    PubMed  CAS  Google Scholar 

  • Bernhardt R, Makower A, Janig G, Ruckpaul K (1984) Selective chemical modification of a functionally linked lysine in cytochrome P-450 LM2. Biochim Biophys Acta 785: 186–190

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt R, Kraft R, Otto A, Ruckpaul K (1988) Electrostatic interactions between cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase. Biomed Biochim Acta 7: 581–592

    Google Scholar 

  • Bhattacharyya AK, Lipka JJ, Waskell L, Tollin G (1991) Laser flash photolysis studies of the reduction kinetics of NADPH: cytochrome P-450 reductase. Biochemistry 30: 759–765

    Article  PubMed  CAS  Google Scholar 

  • Black SD, Coon MJ (1982) Structural features of liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 257: 5929–5938

    PubMed  CAS  Google Scholar 

  • Black SD, French JS, Williams CH Jr, Coon MJ (1979) Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM. Biochem Biophys Res Comm 91: 1528–1535

    Article  PubMed  CAS  Google Scholar 

  • Bonants PJM, Muller F, Vervoort J, Edmondson DE (1990) A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex. Eur J Biochem 190: 531–537

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714–718

    Article  PubMed  CAS  Google Scholar 

  • Brownie AC, Bhasker CR, Waterman MR (1988) Levels of adrenodoxin, NADPH- cytochrome P-450 reductase and cytochromes P-45011(3, P-450c21, P-450scc, in adrenal zona fasciculata-reticularis tissue from androgen-treated rats. Mol Cell Endocrinol 55: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Burnett RM, Darling GD, Kendall DS, LeQuesne ME, Mayhew SG, Smith WW, Ludwig ML (1974) The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution. Description of the flavin mononucleotide binding site. J Biol Chem 249: 4383–4392

    Google Scholar 

  • Chan RL, Carrillo N, Vallejos RH (1985) Isolation and sequencing of an active-site peptide from spinach ferredoxin-NADP+ oxidoreductase after affinity labeling with periodate-oxidized NADP+. Arch Biochem Biophys 240: 172–177

    Article  PubMed  CAS  Google Scholar 

  • Cresteil T, Flinois JP, Pfister A, Leroux JP (1979) Effect of microsomal preparations and induction on cytochrome P-450-dependent monooxygenase in fetal and neonatal rat liver. Biochem Pharmacol 28: 2057–2063

    Article  PubMed  CAS  Google Scholar 

  • Dailey HA, Strittmatter P (1979) Modification and identification of cytochrome b5 carboxyl groups involved in protein-protein interactions with cytochrome b5 reductase. J Biol Chem 254: 5388–5396

    PubMed  CAS  Google Scholar 

  • Dee A, Carlson G, Smith C, Masters B, Waterman MR (1985) Regulation of synthesis and activity of bovine adrenocortical HADPH-cytochrome P-450 reductase by ACTH. Biochem Biophys Res Commun 128: 650–656

    Article  PubMed  CAS  Google Scholar 

  • Drummond MH (1986) Structure predictions and surface charge of nitrogenase flavodoxins from Klebsiella pneumoniae and Azotobacter vinelandii. Eur J Biochem 159: 549–553

    Article  PubMed  CAS  Google Scholar 

  • Dubourdieu M, Fox JL (1977) Amino acid sequence of Desulfovibrio vulgaris flavodoxin. J Biol Chem 252: 1453–1463

    PubMed  CAS  Google Scholar 

  • Durham CR, Zhu H, Masters BS, Simpson ER, Mendelson CR (1985) Regulation of aromatase activity of rat granulosa cells: induction of synthesis of NADPH- cytochrome P-450 reductase by FSH and dibutyryl cyclic AMP. Mol Cell Endocrinol 40: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Enoch HG, Strittmatter P (1979) Cytochrome b5 reduction by NADPH-cytochrome P-450 reductase. J Biol Chem 254: 8976–8981

    PubMed  CAS  Google Scholar 

  • Ghersi-Egea JF, Minn A, Daval JL, Jayyosi Z, Arnould V, Souhaili-El Amri H, Siest G (1989) NADPH: cytochrome P-450(c) reductase: biochemical characterization in rat brain and cultured neurons and evolution of activity during development. Neurochem Res 14: 883–888

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ, Kasper CB (1982) Differential inducibility of nuclear envelope epoxide hydratase by trans-stilbene oxide and phénobarbital. Mol Pharmacol 21: 511–516

    PubMed  CAS  Google Scholar 

  • Gonzalez FJ, Samore M, McQuiddy P, Kasper CB (1982) Effects of 2- acetylaminofluorene and N-hydroxy-2-acetylaminofluorene on the cellular levels of epoxide hydratase, cytochrome P-450b, and NADPH-cytochrome c (P-450) oxidoreductase messenger ribonucleic acids. J Biol Chem 257: 11032–11036

    PubMed  CAS  Google Scholar 

  • Gum JR, Strobel HW (1981) Isolation of the membrane-binding peptide of NADPH-cytochrome P-450 reductase. J Biol Chem 256: 7478–7486

    PubMed  CAS  Google Scholar 

  • Haglund L, Kohler C, Haaparanta T, Goldstein M, Gustafsson JA (1984) Presence of NADPH-cytochrome P450 reductase in central catecholaminergic neurones. Nature 307: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Haniu M, Iyanagi T, Legesse K, Shively JE (1984) Structural analysis of NADPH- cytochrome P-450 reductase from porcine hepatic microsomes: sequences of proteolytic fragments, cysteine-containing peptides, and a NADPH-protected cysteine peptide. J Biol Chem 259: 13703–13711

    PubMed  CAS  Google Scholar 

  • Haniu M, Iyanagi T, Miller P, Lee TD, Shively JE (1986) Complete amino acid sequence of NADPH-cytochrome P-450 reductase from porcine hepatic microsomes. Biochemistry 25: 7906–7911

    Article  PubMed  CAS  Google Scholar 

  • Haniu M, McManus ME, Birkett DJ, Lee TD, Shively JE (1989) Structural and functional analysis of NADPH-cytochrome P-450 reductase from human liver: complete sequence of human enzyme and NADPH-binding sites. Biochemistry 28: 8639–8645

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu I, Gutfinger T (1989) cDNA sequence of adrenodoxin reductase - identification of NADP-binding sites in oxidoreductases. Eur J Biochem 180: 479–484

    Google Scholar 

  • Hardwick JP, Gonzalez FJ, Kasper CB (1983) Transcriptional regulation of rat liver epoxide hydratase, NADPH-cytochrome P-450 oxidoreductase, and cytochrome P-450b genes by phénobarbital. J Biol Chem 258: 8081–8085

    PubMed  CAS  Google Scholar 

  • Hetu C, Joly JG (1988) Effect of chronic acetone administration on ethanol- inducible monooxygenase activities in the rat. Biochem Pharmacol 37: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Ilan Z, Ilan R, Cinti DL (1981) Evidence for a new physiological role of hepatic NADPH: ferricytochrome (P450) oxidoreductase. J Biol Chem 256: 10066–10072

    PubMed  CAS  Google Scholar 

  • Inano H, Tamaoki B (1986) Chemical modification of NADPH-cytochrome P-450 reductase. Eur J Biochem 155: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Iyanagi T, Mason HS (1973) Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochemistry 12: 2297–2308

    Article  PubMed  CAS  Google Scholar 

  • Iyanagi T, Makino N, Mason HS (1974) Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases. Biochemistry 13: 1701

    Article  PubMed  CAS  Google Scholar 

  • Iyanagi T, Makino R, Anan FK (1981) Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase. Biochemistry 20: 1722–1730

    Article  PubMed  CAS  Google Scholar 

  • Joly J-G, Ishii H, Teschke R, Hasumara Y, Lieber CS (1973) Effect of chronic ethanol feeding on the activities and submicrosomal distribution of reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase and the demethylases for aminopyrine and ethylmorphine. Biochem Pharmacol 22: 1532–1535

    Article  PubMed  CAS  Google Scholar 

  • Karplus PA, Walsh KA, Herriott JR (1984) Amino acid sequence of spinach ferredoxin: NADP+ oxidoreductase. Biochemistry 23: 6576–6583

    Google Scholar 

  • Karplus PA, Daniels MJ, Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251: 60–66

    Article  PubMed  CAS  Google Scholar 

  • Kasper CB (1971) Biochemical distinctions between the nuclear and microsomal membranes from rat hepatocytes: the effect of phenobarbital administration. J Biol Chem 246: 577–581

    PubMed  CAS  Google Scholar 

  • Katagiri M, Murakami H, Yabusaki Y, Sugiyama T (1986) Molecular cloning and sequence analysis of full-length cDNA for rabbit liver NADPH-cytochrome P-450 reductase mRNA. J Biochem (Tokyo) 100: 945–954

    CAS  Google Scholar 

  • Keyes SR, Fracasso PM, Heimbrook DC, Rockwell S, Sligar SG, Sartorelli AC (1984) Role of NADPH: cytochrome c reductase and DT diaphorase in the biotransformation of mitomycin C. Cancer Res 44: 5638–5643

    PubMed  CAS  Google Scholar 

  • Kitigawa H, Fijita S, Suzuki T, Kitani K (1985) Disappearance of sex differences in rat liver drug metabolism with age. Biochem Pharmacol 34: 579–581

    Article  Google Scholar 

  • Kurzban GP, Strobel HW (1986) Preparation and characterization of FAD-dependent NADPH-cytochrome P-450 reductase. J Biol Chem 261: 7824–7830

    PubMed  CAS  Google Scholar 

  • Lazar T, Ehrig H, Lumper L (1977) The functional role of thiol groups in protease-solubilized NADPH-cytochrome c reductase from pork-liver microsomes. Eur J Biochem 76: 365–371

    Article  PubMed  CAS  Google Scholar 

  • Lu AYH, Coon MJ (1968) Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 243: 1331–1332

    PubMed  CAS  Google Scholar 

  • Lumper L, Busch F, Dzelic S, Henning J, Lazar T (1980) Studies on the cosubstrate site of protease solubilized NADPH-cytochrome P450 reductase. Int J Pept Protein Res 16: 83–96

    Article  PubMed  CAS  Google Scholar 

  • Lundgren B, DePierre JW (1987) Induction of xenobiotic-metabolizing enzymes and peroxisome proliferation in rat liver caused by dietary exposure to di(2- ethylhexyl)phosphate. Xenobiotica 17: 585–593

    Article  PubMed  CAS  Google Scholar 

  • Masters BBS, Kamin H, Gibson QH, Williams CH (1965) Studies on the mechanism of microsomal triphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem 240: 921–931

    PubMed  CAS  Google Scholar 

  • Masters BSS, Otvos JD, Kasper CB, Shen A, Rajagopalan J, Narayanasami R, Okita JR, McCabe TJ (1990) 31P NMR studies on purified, native and cloned, expressed forms of NADPH-cytochrome P-450 reductase. Fed Proc 4: A2323

    Google Scholar 

  • Müller K, Linder D, Lumper L (1990) The cosubstrate NADP(H) protects lysine 601 in the porcine NADPH-cytochrome P-450 reductase against pyridoxylation. FEBS Lett 260: 289–290

    Article  PubMed  Google Scholar 

  • Nadler SG, Strobel HW (1988) Role of electrostatic interactions in the reaction of NADPH-cytochrome P-450 reductase with cytochromes P-450. Arch Biochem Biophys 261: 418–429

    Article  PubMed  CAS  Google Scholar 

  • Narayanasami R, Otvos JD, Horowitz P, Kasper CB, Shen AL, Okita JR, Camitta M, Masters BSS (1991) Structure-function studies on purified, native and cloned, expressed forms of NADPH-cytochrome P-450 reductase utilizing 31P NMR and fluorescence spectroscopy. Fed Proc 5: A472

    Google Scholar 

  • Ng S, Smith MB, Smith HT, Millett F (1977) Effect of modification of individual cytochrome c lysines on the reaction with cytochrome b5. Biochemistry 16: 4975–4978

    Article  PubMed  CAS  Google Scholar 

  • Nisimoto Y (1986) Localization of cytochrome c-binding domain on NADPH-cytochrome P-450 reductase. J Biol Chem 261: 14232–14239

    PubMed  CAS  Google Scholar 

  • Nisimoto Y, Shilbata Y (1982) Studies on FAD- and FMN-binding domains in NADPH-cytochrome P-450 reductase from rabbit liver microsomes. J Biol Chem 257: 12532–12539

    PubMed  CAS  Google Scholar 

  • Nisimoto Y, Hayashi F, Akutsu H, Kyogoku Y, Shibata Y (1984) Photochemically induced dynamic nuclear polarization study on microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 259: 2480–2483

    PubMed  CAS  Google Scholar 

  • Nisimoto Y, Otsuka-Murakami H (1988) Cytochrome b 5, cytochrome c and cytochrome P-450 interactions with NADPH-cytochrome P-450 reductase in phospholipid vesicles. Biochemistry 27: 5869–5876

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski J, Barber MJ, Rueger DC, Miller BE, Siegel LM, Kredich NM (1989) Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem 264: 15796–15808

    PubMed  CAS  Google Scholar 

  • Otvos JD, Krum DP, Masters BSS (1986) Localization of the free radical on the flavin mononucleotide of the air-stable semiquinone state of NADPH- cytochrome P-450 reductase using 3lP NMR spectroscopy. Biochemistry 25: 7220–7228

    Article  PubMed  CAS  Google Scholar 

  • Pai EF, Schulz GE (1983) The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates. J Biol Chem 258: 1752–1757

    PubMed  CAS  Google Scholar 

  • Pederson TC, Buege JA, Aust SD (1973) Microsomal electron transport: the role of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in liver microsomal lipid peroxidation. J Biol Chem 248: 7134–7141

    PubMed  CAS  Google Scholar 

  • Phillips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem 237: 2652–2660

    PubMed  CAS  Google Scholar 

  • Piriou A, Jacqueson A, Warnet JM, Claude JR (1983) Enzyme induction with high doses of rifampicin in Wistar rats. Toxicol Lett 17: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Poland A, Glover E (1974) Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3-methylcholanthrene. Mol Pharmacol 10: 349–359

    PubMed  CAS  Google Scholar 

  • Porter TD (1991) An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci 16: 154–158

    Article  PubMed  CAS  Google Scholar 

  • Porter TD, Beck TW, Kasper CB (1990) NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein. Biochemistry 29: 9814–9818

    Article  PubMed  CAS  Google Scholar 

  • Porter TD, Kasper CB (1985) Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains. Proc Natl Acad Sci USA 82: 973–977

    Article  PubMed  CAS  Google Scholar 

  • Porter TD, Kasper CB (1986) NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry 25: 1682–1687

    Article  PubMed  CAS  Google Scholar 

  • Prasad JS, Crankshaw DL, Erickson RR, Elliot CE (1985) Studies on the effect of chronic consumption of moderate amounts of ethanol on male rat hepatic microsomal drug-metabolizing activity. Biochem Pharmacol 34: 3427–3431

    Article  PubMed  CAS  Google Scholar 

  • Reed CJ, Lock EA, De Matteis F (1986) NADPH: cytochrome P-450 reductase in olfactory epithelium. Relevance to cytochrome P-450-dependent reactions. Biochem J 240: 585–592

    PubMed  CAS  Google Scholar 

  • Rice SA, Talcott RE (1979) Effects of isoniazid treatment on selected hepatic mixed-function oxidases. Drug Metab Dispos 7: 260–262

    PubMed  CAS  Google Scholar 

  • Rossman MG, Liljas A, Branden C-I, Banaszak LJ (1975) Evolutionary and structural relationships among dehydrogenases. In: Boyer PD (ed) The enzymes, vol 11. Academic, New York, p 62

    Google Scholar 

  • Ruettinger RT, Wen L-P, Fulco AJ (1989) Coding nucleotide, 5′ regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450: NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264: 10987–10995

    PubMed  CAS  Google Scholar 

  • Schacter BA, Nelson EB, Marver HS, Masters BSS (1972) Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system. J Biol Chem 247: 3601–3607

    PubMed  CAS  Google Scholar 

  • Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343: 38–43

    Article  PubMed  CAS  Google Scholar 

  • Sevanian A, Nordenbrand K, Kim E, Ernster L, Hochstein P (1990) Microsomal lipid peroxidation: the role of NADPH-cytochrome P450 reductase and cytochrome P450. Free Radic Biol Med 8: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Shen AL, Kasper CB (1990) Localization of the cytochrome c binding site of NADPH-cytochrome P-450 oxidoreductase. Fed Proc 4: A2322

    Google Scholar 

  • Shen AL, Porter TD, Wilson TE, Kasper CB (1989) Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. J Biol Chem 264: 7584–7589

    PubMed  CAS  Google Scholar 

  • Shen AL, Christensen MJ, Kasper CB (1991) NADPH-cytochrome P-450 oxidoreductase: the role of cysteine 566 in catalysis and cofactor binding. J Biol Chem 266: 19976–19980

    PubMed  CAS  Google Scholar 

  • Shen ES, Guengerich FP, Olson JR (1989) Biphasic response for hepatic microsomal enzyme induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Biochem Pharmacol 38: 4075–4084

    Article  PubMed  CAS  Google Scholar 

  • Shephard EA, Phillips IR, Pike SF, Ashworth A, Rabin BR (1982) Differential effect of phenobarbital and beta-naphthoflavone on the mRNAs coding for cytochrome P450 and NADPH cytochrome P450 reductase. FEBS Lett 150: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Shephard EA, Phillips IR, Santisteban E, West LF, Palmer CNA (1989) Isolation of a human cytochrome P-450 reductase cDNA clone and localization of the corresponding gene to chromosome 7qll.2. Ann Hum Genet 53: 291–301

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Tateishi T, Hatano M, Fujii-Kuriyama Y (1991) Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. J Biol Chem 266: 3372–3375

    PubMed  CAS  Google Scholar 

  • Shiraki H, Guengerich FP (1984) Turnover of membrane proteins: kinetics of induction and degradation of seven forms of rat liver microsomal cytochrome P-450, NADPH-cytochrome P-450 reductase, and epoxide hydrolase. Arch Biochem Biophys 235: 86–96

    Article  PubMed  CAS  Google Scholar 

  • Simmons DL, Kasper CB (1989) Quantitation of mRNAs specific for the mixed- function oxidase system in rat liver and extrahepatic tissues during development. Arch Biochem Biophys 271: 10–20

    Article  PubMed  CAS  Google Scholar 

  • Simmons DL, Lalley PA, Kasper CB (1985) Chromosomal assignments of genes coding for components of the mixed function oxidase system in mice. Genetic localization of the cytochrome P-450PCN and P-450PB gene families and the NADPH-cytochrome P-450 oxidoreductase, and epoxide hydratase genes. J Biol Chem 260: 515–521

    PubMed  CAS  Google Scholar 

  • Simmons DL, McQuiddy P, Kasper CB (1987) Induction of the hepatic mixed-function oxidase system by synthetic glucocorticoids: transcriptional and posttranscriptional regulation. J Biol Chem 262: 326–332

    PubMed  CAS  Google Scholar 

  • Sugiyama T, Nisimoto Y, Mason HS, Loehr TM (1985) Flavins of NADPH-cytochrome P-450 reductase: evidence for structural alteration of flavins in their one-electron-reduced semiquinone state from resonance Raman spectroscopy. Biochemistry 24: 3012–3019

    Article  PubMed  CAS  Google Scholar 

  • Sutter TR, Loper JC (1989) Disruption of the Saccharomyces cerevisiae gene for NADPH-cytochrome P450 reductase causes increased sensitivity to ketoconazole. Biochem Biophys Res Commun 160: 1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Sutter TR, Sangard D, Loper JC (1990) Isolation and characterization of the alkane- inducible NADPH-cytochrome P-450 oxidoreductase gene from Candida tropicalis. Identification of invariant residues within similar amino acid sequences of divergent flavoproteins. J Biol Chem 265: 16428–16436

    Google Scholar 

  • Takeshita M, Tamura M, Yubisui (1983) Microsomal electron-transport reductase activities and fatty acid elongation in rat brain. Biochem J 214: 751–756

    Google Scholar 

  • Tamburini P, Schenkman JB (1986) Differences in the mechanism of functional interaction between NADPH-cytochrome P-450 reductase and its redox partners. Mol Pharmacol 30: 178–185

    PubMed  CAS  Google Scholar 

  • Tamburini PP, Schenkman JB (1987) Purification to homogeneity and enzymological characterization of a functional covalent complex composed of cytochromes P-450 isozyme 2 and b 5 from rabbit liver. Proc Natl Acad Sci USA 84: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Tamburini PP, Jansson I, Favreau LV, Backes WL, Schenkman JB (1986a) Differences in the spectral interactions between NADPH-cytochrome P-450 reductase and a series of cytochrome P-450 enzymes. Biochem Biophys Res Commun 137: 437–442

    Article  PubMed  CAS  Google Scholar 

  • Tamburini PP, MacFarquhar S, Schenkman JB (1986b) Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH- cytochrome P-450 reductase of hepatic microsomes. Biochem Biophys Res Commun 134: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Thomas PE, Reik LM, Ryan DE, Levin W (1981) Regulation of three forms of cytochrome P-450 and epoxide hydrolase in rat liver microsomes. J Biol Chem 256: 1044–1052

    PubMed  CAS  Google Scholar 

  • Tu YY, Peng R, Chang Z-F, Yang CS (1983) Induction of a high affinity nitrosamine demethylase in rat liver microsomes by acetone and isopropanol. Chem Biol Interact 44: 247–255

    Article  PubMed  CAS  Google Scholar 

  • Urenjak J, Linder D, Lumper (1987) Structural comparison between the trout and mammalian hydrophilic domain of NADPH-cytochrome P-450 reductase. J Chromatogr 397: 123–136

    Google Scholar 

  • van der Hoeven T, Galivan J (1987) The effect of dexamethasone, insulin, and triiodothyronine on microsomal NADPH-cytochrome-c (P-450) reductase in primary cultures of isolated hepatocytes. Biochim Biophys Acta 931: 59–67

    Article  PubMed  Google Scholar 

  • Vermilion JL, Coon MJ (1978) Identification of the high and low potential flavins of liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 253: 8812–8819

    PubMed  CAS  Google Scholar 

  • Vermilion JL, Ballou DP, Massey V, Coon MJ (1981) Separate roles for FMN and FMN in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 256: 266–277

    PubMed  CAS  Google Scholar 

  • Vogel F, Lumper L (1986) Complete structure of the hydrophilic domain in the porcine NADPH-cytochrome P-450 reductase. Biochem J 236: 871–878

    PubMed  CAS  Google Scholar 

  • von Heijne G (1985) Structural and thermodynamic aspects of the transfer of proteins into and across membranes. Curr Top Membr Trans 24: 151

    Google Scholar 

  • Watenpaugh KD, Sieker LC, Jensen LH (1973) The binding of riboflavin-5′-phosphate in a flavoprotein: flavodoxin at 2.0-A resolution. Proc Natl Acad Sci USA 70: 3857–3860

    Article  PubMed  CAS  Google Scholar 

  • Waxman DJ, Morrissey JJ, Leblanc GA (1989) Hypophysectomy differentially alters P-450 protein levels and enzyme activities in rat liver: pituitary control of hepatic NADPH-cytochrome P-450 reductase. Mol Pharmacol 35: 519–525

    PubMed  CAS  Google Scholar 

  • Wierenga RK, De Maeyer MCH, Hoi WGJ (1985) Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding proteins. Biochemistry 24: 1346–1357

    Article  CAS  Google Scholar 

  • Williams CH, Kamin H (1962) Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver. J Biol Chem 237: 587–595

    PubMed  CAS  Google Scholar 

  • Wolf CR, Moll E, Friedberg T, Oesch F, Buchmann A, Kuhlmann WD, Kunz HW (1984) Characterization, localization, and regulation of a novel phenobarbital-inducible form of cytochrome P450, compared with three further P450 isozymes, NADPH P450-reductase, glutathione transferase and microsomal epoxide hydrolase. Carcinogenesis 5: 993–1001

    Article  PubMed  CAS  Google Scholar 

  • Wu H-Q, Masset-Brown J, Tweedie DJ, Milewich L, Frenkel RA, Martin-Wixtrom C, Estabrook R, Prough R (1989) Induction of microsomal NADPH- cytochrome P-450 reductase and cytochrome P-450IVAl(P-450Laco) by dehydroepiandrosterone in rats: a possible peroxisomal proliferator. Cancer Res 49: 2337–2343

    PubMed  CAS  Google Scholar 

  • Yabusaki Y, Murakami H, Ohkawa H (1988) Primary structure of Saccharomyces cerevisiae NADPH-cytochrome P-450 reductase deduced from nucleotide sequence of its cloned gene. J Biochem (Tokyo) 103: 1004–1010

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, A.L., Kasper, C.B. (1993). Protein and Gene Structure and Regulation of NADPH-Cytochrome P450 Oxidoreductase. In: Schenkman, J.B., Greim, H. (eds) Cytochrome P450. Handbook of Experimental Pharmacology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77763-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77763-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77765-3

  • Online ISBN: 978-3-642-77763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics