Skip to main content

NADPH-Cytochrome P450 Reductase: Function

  • Chapter
Cytochrome P450

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 105))

Abstract

In 1950, a report was published describing the isolation of a protein involved in the reduction of cytochrome c in animal tissue (Horecker 1950). The search for this enzyme was prompted by the previous discovery of an NADPH-cytochrome c reductase in yeast (Haas et al. 1940). The yeast enzyme was shown to use NADPH as the source of reducing equivalents, and contained flavin mononucleotide (FMN) as a prosthetic group. This newly discovered enzyme was isolated from an acetone powder of pig liver after trypsin treatment. It had a molecular weight of 68000, used NADPH as its source of reducing equivalents, and was reported to contain the prosthetic group flavine adenine dinucleotide (FAD). The flavin was shown to be a necessary cofactor, since its removal from the enzyme led to the elimination of its cytochrome c reductase activity. Addition of either FMN or FAD to the apoenzyme led to its reactivation. The reductase was subsequently found to be located in the microsomal fraction (Phillips and Langdon 1962; Williams and Kamin 1962). These earlier findings provided the setting for raising a number of questions concerning reductase function: Since cytochrome c is located in the mitochondria, what is the physiological substrate for NADPH-cytochrome c reductase? How many flavins are actually present, and how are they involved in the electron transfer process? The reductase is now commonly called NADPH-cytochrome P450 reductase, referring to the endogenous electron acceptor, cytochrome P450.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alvares AP, Pratt WB (1990) Pathways of drug metabolism. In: Pratt WB, Taylor (eds) Principles of drug action: the basis of pharmacology, 3rd edn. Churchill Livingstone, New York, pp 365–422

    Google Scholar 

  • Backes WL, Reker-Backes CE (1988) The effect of NADPH concentration on the reduction of cytochrome P-450 LM2. J Biol Chem 263: 247–253

    PubMed  CAS  Google Scholar 

  • Baggot JP, Langdon RG (1970) The relation of reduced triphosphopyridine nucleotide cytochrome c reductase structure to its interaction with cofactors. J Biol Chem 245: 5888–5896

    Google Scholar 

  • Berlin V, Haseltine WA (1981) Reduction of Adriamycin to a emiquinone-free radical by NADPH-cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. J Biol Chem 256: 4747–4756

    PubMed  CAS  Google Scholar 

  • Bhattacharyya AK, Lipka JJ, Waskell L, Tollin G (1991) Laser flash photolysis studies of the reduction kinetics of NADPH: cytochrome P-450 reductase. Biochemistry 30: 759–765

    Article  PubMed  CAS  Google Scholar 

  • Black SD, Coon MJ (1982) Structural features of liver microsomal NADPH-cytochrome P-450 reductase (hydrophobic domain, hydrophilic domain, and connecting region). J Biol Chem 257: 5929–5938

    PubMed  CAS  Google Scholar 

  • Black SD, French JS, Williams CH, Coon MJ (1979) Role of hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM. Biochem Biophys Res Commun 91: 1528–1535

    Article  PubMed  CAS  Google Scholar 

  • Dignam JD, Strobel HW (1975) Preparation of homogeneous NADPH-cytochrome P-450 reductase from rat liver. Biochem Biophys Res Commun 63: 845–852

    Article  PubMed  CAS  Google Scholar 

  • Dignam JD, Strobel HW (1977) NADPH-cytochrome p-450 reductase from rat liver: purification by affinity chromatography and characterization. Biochemistry 16: 116–1123

    Article  Google Scholar 

  • Dutton DR, Reed GA, Parkinson A (1989) Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase. Arch Biochem Biophys 268: 605–616

    Article  PubMed  CAS  Google Scholar 

  • Ekström G, Ingelman-Sundberg M (1989) Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Biochem Pharmacol 38: 1313–1319

    Article  PubMed  Google Scholar 

  • Enoch HG, Strittmatter P (1979) Cytochrome b 5 reduction by NADPH-cytochrome P-450 reductase. J Biol Chem 254: 8976–8981

    PubMed  CAS  Google Scholar 

  • Ernster L, Orrenius S (1965) Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed Proc 24: 1190–1199

    PubMed  CAS  Google Scholar 

  • Estabrook RW, Franklin MR, Cohen B, Shigamatzu A, Hildebrandt AG (1971) Biochemical and genetic factors influencing drug metabolism: influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism 20: 187–199

    Article  PubMed  CAS  Google Scholar 

  • Feller DR, Morita M, Gillette JR (1971) Enzymatic reduction of niridazole by rat liver microsomes. Biochem Pharmacol 20: 203–215

    Article  PubMed  CAS  Google Scholar 

  • Haas E, Horecker BL, Hogness TR (1940) The enzymatic reduction of cytochrome c: cytochrome c reductase. J Biol Chem 136: 747–774

    CAS  Google Scholar 

  • Heimbrook DC, Sartorelli AC (1986) Biochemistry of misonidazole reduction by NADPH-cytochrome c (P-450) reductase. Mol Pharmacol 29: 168–172

    PubMed  CAS  Google Scholar 

  • Hernandez PH, Gillette JR, Mazel P (1967) Studies on the mechanism of action of mammalian hepatic azoreductase: azoreductase activity of NADPH-cytochrome c reductase. Biochem Pharmacol 16: 1859–1875

    Article  PubMed  CAS  Google Scholar 

  • Horecker BL (1950) Triphosphopyridine nucleotide-cytochrome c reductase in liver. J Biol Chem 183: 593–605

    CAS  Google Scholar 

  • Ilan Z, Ilan R, Cinti DL (1981) Evidence for a new physiological role of hepatic NADPH-ferricytochrome (P-450) oxidoreductase: direct electron input to the microsomal fatty acid chain elongation system. J Biol Chem 256: 10066–10072

    PubMed  CAS  Google Scholar 

  • Iyanagi T, Mason HS (1973) Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochemistry 12: 2297–2308

    Article  PubMed  CAS  Google Scholar 

  • Iyanagi T, Makino N, Mason HS (1974) Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductases. Biochemistry 13: 1701–1710

    Article  PubMed  CAS  Google Scholar 

  • Iyanagi T, Anan FK, Imai Y, Mason HS (1978) Studies on the microsomal mixed function oxidase system: redox properties of detergent-solubilized NADPH-cytochrome P-450 reductase. Biochemistry 17: 2224–2230

    Article  PubMed  CAS  Google Scholar 

  • Iyanagi T, Makino R, Anan FK (1981) Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase. Biochemistry 20: 1722–1730

    Article  PubMed  CAS  Google Scholar 

  • Jick H, Shuster L (1966) The turnover of microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in the livers of mice treated with phenobarbital. J Biol Chem 241: 5366–5369

    PubMed  CAS  Google Scholar 

  • Kadlubar FF, Ziegler DM (1974) Properties of a NADH-dependent N-hydroxy amine reductase isolated from pig liver microsomes. Arch Biochem Biophys 162: 83–92

    Article  PubMed  CAS  Google Scholar 

  • Keyess R, Alfano JA, Jansson I, Cinti DL (1979) Rat liver microsomal elongation of fatty acids. J Biol Chem 254: 7778–7784

    Google Scholar 

  • Kharasch ED, Novak RF (1983) Bis(alkylamino)anthracenedione antineoplastic agent metabolic activation by NADPH-cytochrome P-450 reductase and NADH dehydrogenase: diminished activity relative to anthracyclines. Arch Biochem Biophys 224: 682–694

    Article  PubMed  CAS  Google Scholar 

  • Krisch K, Staudinger HJ (1961) Untersuchungen zur enzymatischen Hydroxylierung ( Hydroxylierung von Acetanilid und deren Beziehungen zur mikrosomalen Pyridinnucleotidoxydation. Biochem Z 334: 312–327

    PubMed  CAS  Google Scholar 

  • Kurzban GP, Strobel HW (1986) Preparation and characterization of FAD-dependent NADPH-cytochrome P-450 reductase. J Biol Chem 261: 7824–7830

    PubMed  CAS  Google Scholar 

  • Kurzban GP, Howarth J, Palmer G, Strobel HW (1990) NADPH-cytochrome P-450 reductase (physical properties and redox behavior in the absence of the FAD moiety). J Biol Chem 265: 12272–12279

    PubMed  CAS  Google Scholar 

  • Laporte F, Dousiere J, Mechin V, Vignais PV (1991) NADPH-cytochrome c reductase from rabbit peritoneal neutrophils: purification, properties and function in the respiratory burst. Eur J Biochem 196: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Lu AYH, Coon MJ (1968) Role of hemoprotein P-150 in fatty acid co-hydroxylation in soluble enzyme system from liver microsomes. J Biol Chem 243: 1331–1332

    PubMed  CAS  Google Scholar 

  • Lu AYH, Junk KW, Coon MJ (1969) Resolution of the cytochrome P-450-containing co-hydroxylation system of the liver microsomess into three components. J Biol Chem 244: 3714–3721

    PubMed  CAS  Google Scholar 

  • Mahmutoglu I, Kappus H (1985) Oxy radical formation during redox cycling of the bleomycin-iron (III) complex by NADPH cytochrome P-450 reductase. Biochem Pharmacol 34: 3091–3094

    Article  PubMed  CAS  Google Scholar 

  • Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms and clinical applications. FASEB J 2: 2557–2568

    PubMed  CAS  Google Scholar 

  • Masters BSS, Kamin H (1965) Studies on the mechanism of microsomal triphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem 240: 921–931

    PubMed  CAS  Google Scholar 

  • Masters BSS, Billmoria MH, Kamin H (1965) The mechanism of 1- and 2-electron transfers catalyzed by reduced triphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem 240: 4081–4088

    PubMed  CAS  Google Scholar 

  • Miwa GT, Lu AYH (1984) The asociation of cytochrome p-450 and NADPH-cytochrome P-450 reductase in phospholipid membranes. Arch Biochem Biophys 234: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Miwa GT, West SB, Huang MT, Lu AYH (1979) Studies on the asociation of cytochrome P-450 and NADPH-cytochrome c reductase during catalysis in a reconstituted hydroxylating system. J Biol Chem 254: 5695–5700

    PubMed  CAS  Google Scholar 

  • Nishibayashi H, Omura T, Sato R (1963) A flavoprotein oxidizing NADPH isolated from liver microsomess. Biochim Biophys Acta 67: 520–522

    Article  PubMed  CAS  Google Scholar 

  • Omura T, Takesue S (1970) A new method for simultaneous purification of cytochrome b 5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem (Tokyo) 67: 249–257

    CAS  Google Scholar 

  • Oprian DD, Coon MJ (1982) Oxidation-reduction states of FMN and FAD in NADPH-cytochrome P-450 reductase during reduction by NADPH. J Biol Chem 257: 8935–8944

    PubMed  CAS  Google Scholar 

  • Oprian DD, Vatsis KP, Coon MJ (1979) Kinetics of reduction of cytochrome P-450LM4 in a reconstituted microsomal enzyme system. J Biol Chem 254: 8895–8902

    PubMed  CAS  Google Scholar 

  • Paltauf F, Prough RA, Masters BSS, Johnston JM (1974) Evidence for the participation of cytochrome b 5 in plasmalogen biosynthesis. J Biol Chem 249: 2661–2662

    CAS  Google Scholar 

  • Pederson TC, Aust SD (1972) NADPH-dependent lipid peroxidation catalyzed by purified NADPH-cytochrome c reductase from rat liver microsomes. Biochem Biophys Res Commun 48: 789–794

    Article  PubMed  CAS  Google Scholar 

  • Peterson FJ, Holtzman JL, Crankshaw D, Mason RP (1988) Two sites of azo reduction in the monooxygenase system. Mol Pharmacol 34: 597–603

    PubMed  CAS  Google Scholar 

  • Peterson JA, White RE, Yasukochi Y, Coomes ML, O’Keeffe DH, Ebel RE, Masters BSS, Ballou DP, Coon MJ (1977) Evidence that purified liver microsomal cytochrome P-450 is a one-electron acceptor. J Biol Chem 252: 4431–4434

    PubMed  CAS  Google Scholar 

  • Phillips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem 237: 2652–2660

    PubMed  CAS  Google Scholar 

  • Powis G, See KL, Santone KS, Melder DC, Hodnett EM (1987) Quinoneimines as substrates for quinone reductase (NAD(P)H):(quinone-acceptor)oxidoreductase) and the effect of dicumarol on their activity. Biochem Pharmacol 36: 2473–2479

    Article  PubMed  CAS  Google Scholar 

  • Pugh EL, Kates M (1977) Direct desaturation of eicosatrienoyl lecithin to arachidonoyl lecithin by rat liver microsomes. J Biol Chem 252: 68–73

    PubMed  CAS  Google Scholar 

  • Reddy VVR, Kupfer D, Caspi E (1977) Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. J Biol Chem 252: 2797–2801

    PubMed  CAS  Google Scholar 

  • Rodkey FL, Donovan JA (1959) Oxidation-reduction potentials of the triphosphopyridine nucleotide system. J Biol Chem 234: 677–680

    PubMed  CAS  Google Scholar 

  • Sakane F, Kojima H, Takahashi K, Koyama J (1987) Porcine polymorphonuclear leukocyte NADPH-cytochrome c reductase generates superoxide in the presence of cytochrome b559 and Phospholipid. Biochem Biophys Res Commun 147: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Schacter BA, Nelson EB, Marver HS, Masters BSS (1972) Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system. J Biol Chem 247: 3601–3607

    PubMed  CAS  Google Scholar 

  • Scheulen ME, Kappus H, Thyssen D, Schmidt CG (1981) Redox cycling of Fe (III) - bleomycin by NADPH-cytochrome P-450 reductase. Biochem Pharmacol 30: 3385–3388

    Article  PubMed  CAS  Google Scholar 

  • Shimakota T, Mihara K, Sato R (1972) Reconstitution of hepatic microsomal stearoyl-oenzyme A desaturase system from solubilized components. J Biochem (Tokyo) 72: 1163–1174

    Google Scholar 

  • Spencer CB, Rifkind AB (1990) NAD(P)H: quinone oxidoreductase (DT- diaphorase) in chick embryo liver: comparison to activity in rat and guinea pig liver and differences in co-induction with 7-ethoxyresorufin deethylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 39: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R (1974) Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 71: 4565–4569

    Article  PubMed  CAS  Google Scholar 

  • Strobel HW, Lu AYH, Heidema J, Coon MJ (1970) Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. 245: 4851–4854

    CAS  Google Scholar 

  • Vermilion JL, Coon MJ (1978a) Purified liver microsomal NADPH-cytochrome P-450 reductase (spectral characterization of oxidation-reduction states). J Biol Chem 253: 2694–2704

    PubMed  CAS  Google Scholar 

  • Vermilion JL, Coon MJ (1978b) Identification of the high and low potential flavins of liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 253: 8812–8819

    PubMed  CAS  Google Scholar 

  • Vermilion JL, Ballou DP, Massey V, Coon MJ (1981) Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 256: 266–277

    PubMed  CAS  Google Scholar 

  • Wada F, Shibata H, Goto M, Sakamoto Y (1968) Participation of the microsomal electron transport system involving cytochrome P-450 in co-oxidation of fatty acids. Biochim Biophys Acta 162: 518–524

    Article  PubMed  CAS  Google Scholar 

  • Williams CH, Kamin H (1962) Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver. J Biol Chem 237: 587–595

    PubMed  CAS  Google Scholar 

  • Yasukochi Y, Masters BSS (1976) Some properties of a detergent-solubilized NADPH-cytochrome c (cytochrome P-450) reductase purified by biospecific affinity chromatography. J Biol Chem 251: 5337–5344

    PubMed  CAS  Google Scholar 

  • Yasukochi Y, Peterson JA, Masters BSS (1979) NADPH-cytochrome c (P-450) reductase (spectrophotometric and stopped flow kinetic studies on the formation of reduced flavoprotein intermediates). J Biol Chem 254: 7097–7104

    PubMed  CAS  Google Scholar 

  • Zbaida S, Levine WG (1990) Characteristics of two classes of azo dye reductase activity associated with rat liver microsomal cytochrome P-450. Biochem Pharmacol 40: 2415–2423

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Backes, W.L. (1993). NADPH-Cytochrome P450 Reductase: Function. In: Schenkman, J.B., Greim, H. (eds) Cytochrome P450. Handbook of Experimental Pharmacology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77763-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77763-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77765-3

  • Online ISBN: 978-3-642-77763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics