Skip to main content

Structure of the Glutaminyl-tRNA Synthetase — tRNAGln — ATP Complex

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 6))

Abstract

Elucidation of the structural basis of tRNA recognition and discrimination is the central motive underlying the crystallographic study of the aminoacyl-tRNA synthetases (aaRS). These enzymes must charge (aminoacylate with their corresponding amino acid) only their cognate tRNAs, discriminating against the myriad of very similar noncognate tRNAs, with the high fidelity necessary to ensure accurate translation of the genetic code. From examination of these interactions as observed in the crystal structure of the E. coli glutaminyl-tRNA synthetase (GlnRS) complexed with its cognate tRNA and ATP, now refined at 2.5Å resolution (Rould et al. 1989, 1991), general principles of RNA recognition by proteins are emerging. In contrast to the transcription regulatory proteins that rely solely on binding affinity to discriminate among DNA sequences, the aaRSs may also use regulation of the catalytic steps — allostery — to discriminate amongst tRNAs. The crystal structure of the G1nRS — tRNAGln — ATP complex suggests testable mechanisms for mediating these allosteric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brick P, Blow DM (1987) Crystal structure of a deletion mutant of a tyrosyl-tRNA synthetase complexed with tyrosine. J Mol Biol 194: 287–297

    Article  PubMed  CAS  Google Scholar 

  • Brick P, Bhat TN, Blow DM (1988) Structure of tyrosyl-tRNA synthetase refined at 2.3Å resolution: interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol biol 208: 83–89

    Article  Google Scholar 

  • Brunie S, Mellot P, Zelwer C, Risler J-L, Blanquet S, Fayat G (1987) Structure-activity relationships of methionyl-tRNA synthetase. J Mol Graph 5: 18–21

    Article  CAS  Google Scholar 

  • Crothers DM, Seno T, Soll D (1972) Is there a discriminator site in tRNA? Proc Natl Acad Sei USA 69: 3063–3067

    Article  CAS  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature (London) 347: 203–206

    Article  CAS  Google Scholar 

  • Ferguson BQ, Yang DCH (1986) Topographic modelling of free and methionyl-tRNA synthetase bound tRNA™61 by singlet-singlet energy transfer: bending of the 3’- terminal arm in tRNA™6’. Biochemistry 25: 6572–6578

    Article  PubMed  CAS  Google Scholar 

  • Fersht A (1987) Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis. Biochemistry 26: 8031–8037

    Article  PubMed  CAS  Google Scholar 

  • Fersht A, Knill-Jones JW, Bedouelle H, Winter G (1988) Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl-tRNA synthetase: a mobile loop envelopes the transition state in an induced-fit mechanism. Biochemistry 27: 1581–1587

    Article  PubMed  CAS  Google Scholar 

  • Hoben P, Royal M, Cheung A, Yamao F, Biemann K, Söll D (1982) Ecoli glutaminyl-tRNA synthetase: characterization of the glnS gene product. J Biol Chem 257: 11644–11650

    PubMed  CAS  Google Scholar 

  • Holbrook SR, Sussman JL, Warrant RW, Kim SH (1978) Crystal structure of yeast phenylalanine tRNA: structural features and functional implications. J Mol Biol 123: 631–660.

    Article  PubMed  CAS  Google Scholar 

  • Jahn M, Rogers MJ, Söll D (1991) Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coliglutaminyl-tRNA synthetase. Nature (London) 352: 258–260

    Article  CAS  Google Scholar 

  • Ladner JE, Jack A, Robertus JD, Brown RS, Rhodes D, Clark BFC, Klug A (1975) Structure of the yeast phenylalanine tRNA at 2.5Å resolution. Proc Natl Acad Sei USA 72: 4414–4418

    Article  CAS  Google Scholar 

  • Landes C, Perona JJ, Brunie S, Rould MA, Zelwer C, Steitz TA, Risler J-L (in preparation) Primary sequence and tertiary structure similarities as evidence for a dinucleotide binding fold in class I aminoacyl-tRNA synthetases.

    Google Scholar 

  • Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55: 379–400

    Article  PubMed  CAS  Google Scholar 

  • Moras D, Comarmond MB, Fischer J, Weiss R, Thierry JC, Ebel JP, Giege R (1980) Crystal structure of yeast tRNAAsp. Nature (London) 288: 669–674

    Article  CAS  Google Scholar 

  • Normanly J, Abelson J (1989) tRNA identity. Annu Rev Biochem 58:1029–1049

    Article  PubMed  CAS  Google Scholar 

  • Perona JJ, Swanson R, Rould MA, Steitz TA, Söll D (1989) Structural basis for mis-aminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes. Science 246: 1152–1154

    Article  PubMed  CAS  Google Scholar 

  • Perona JJ, Rould MA, Steitz TA, Risler J-L, Zelwer C, Brunie S (1991) Structural similarities in glutaminyl-and methionyl-tRNA synthetases suggest a common overall orientation of binding. Proc Natl Acad Sei USA 88: 2903–2907

    Article  CAS  Google Scholar 

  • Perona JJ, Rould MA, Steitz TA (in preparation) Structural basis for tRNA aminoacyla-tion by E. coli glutaminyl-tRNA synthetase: enzyme-ligand interactions and comparisons with the active site structures of tyrosyl-and methionyl-tRNA synthetases.

    Google Scholar 

  • Priestle JP (1988) RIBBON: A stereo cartoon drawing program for proteins. J Appl Crystallogr 21: 572–576

    Article  Google Scholar 

  • Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BFC, Klug A (1974) Structure of yeast tRNAphe at 3Å resolution. Nature (London) 250: 546–551

    Article  CAS  Google Scholar 

  • Rossmann MG, Liljas A, Branden CI, Banaszak LJ (1975) Evolutionary and structural relationships among dehydrogenases. In: Boyer PD (ed) The enzymes, vol 9. Academic Press, New York London, pp 61–102

    Google Scholar 

  • Rould MA, Perona JJ, Soll D, Steitz TA (1989) Structure of E. coliglutaminyl-tRNA synthetase complexed with tRNAGln and ATP. Science 246: 1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Rould MA, Perona JJ, Steitz TA (1991) Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (London) 352: 213–218

    Article  CAS  Google Scholar 

  • Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Class II aminoacyl-tRNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAASP. Science 252: 1682–1689

    Article  PubMed  CAS  Google Scholar 

  • Schimmel PR, Söll D (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48: 601–648

    Article  PubMed  CAS  Google Scholar 

  • Schulman LH, Pelka H (1985) In vitro conversion of a methionine to a glutamine-acceptor tRNA. Biochemistry 24:7309–7314

    Article  PubMed  CAS  Google Scholar 

  • Seno T, Agris PF, Soll D (1974) Involvement of the anticodon region of E. colitRNAGIn and tRNAGIn in the specific interaction with cognate aminoacyl-tRNA synthetase: alteration of the 2-thiouridine derivatives located in the anticodon of the tRNA’s by BrCN or sulfur deprivation. Biochim Biophys Acta 349: 328–338

    PubMed  CAS  Google Scholar 

  • Sprinzl M, Hartmann T, Weber J, Blank J, Zeidler R (1989) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 17, 1–172

    Article  Google Scholar 

  • Sussman JL, Holbrook SR, Warrant RW, Church GM, Kim S-H (1978) Crystal structure of yeast phenylalanine tRNA: crystallographic refinement. J Mol Biol 123: 607–630

    Article  PubMed  CAS  Google Scholar 

  • Uemura H, Conley J, Yamao F, Rogers J, Soll, D (1988) E. coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes tRNA specificity. Protein Sequ Data Anal 1:479–485

    CAS  Google Scholar 

  • Webster T, Tsai H, Kula M, Mackie GA, Schimmel P (1984) Specific sequence homology and three-dimensional structure of an aminoacyl-tRNA synthetase. Science 226: 1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Westhof E (1988) Water: an integral part of nucleic acid structure. Annu Rev Biophys Biophys Chem 17: 125–144

    Article  PubMed  CAS  Google Scholar 

  • Westhof E, Dumas P, Moras D (1988a) Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine tRNA crystals. Acta Crystallogr A44: 112–123

    CAS  Google Scholar 

  • Westhof E, Dumas P, Moras D (1988b) Hydration of tRNA molecules: a crystallographic study. Biochimie 70: 145–165

    Article  CAS  Google Scholar 

  • Yamao F, Inokuchi H, Cheung A, Ozeki H, Söll D (1982) E. coli glutaminyl-tRNA synthetase: isolation and DNA sequence of the glnS gene. J Biol Chem 257:11639–11643

    PubMed  CAS  Google Scholar 

  • Yaniv M, Folk WR, Berg P, Soll L (1974) A single mutational modification of a tryptophan-specific tRNA permits aminoacylation by glutamine and translation of the anticodon UAG. J Mol Biol 86: 245–260

    Article  PubMed  CAS  Google Scholar 

  • Yarus M, Knowlton R, Soll L (1977) Aminoacylation of the ambivalent su+7 amber suppressor tRNA. In: Vogel HJ (ed) Nucleic acid — protein recognition. Academic Press, New York London, pp 391–408

    Google Scholar 

  • Yarus M, Cline SW, Wier P, Breeden L, Thompson RC (1986) Actions of the anticodon arm in translation on the phenotypes of tRNA mutants. J Mol Biol 192: 235–255

    Article  PubMed  CAS  Google Scholar 

  • Zelwer C, Risler J-L, Brunie S (1982) Crystal structure of E. colimethionyl-tRNA synthetase at 2.5 Å resolution. J Mol Biol 155: 63–81

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rould, M.A., Steitz, T.A. (1992). Structure of the Glutaminyl-tRNA Synthetase — tRNAGln — ATP Complex. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77356-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77356-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77358-7

  • Online ISBN: 978-3-642-77356-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics