Skip to main content

Molecular Structure of the Extracellular Heme Proteins

  • Chapter
Blood and Tissue Oxygen Carriers

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

Hemoglobins are present in all five kingdoms of organisms and are widely but sporadically distributed among the animal kingdom, including the Platy- helminthes, Annelida, Vestimentifera, Pogonophora, Echiura, Nematoda, Phoronida, Arthropoda, Mollusca, Echinodermata, and Chordata. Extracellular hemoglobins, molecules synthesized intracellularly and then secreted into the hemolymph, have been reported only in organisms in the protostome line of animal phylogeny (although not all protostomes have an extracellular hemoglobin). Those phyla that contain extracellular hemoglobins include the Annelida, Vestimentifera, Pogonophora, Nematoda, Arthropoda, and Mollusca. R. Lankester, a British physiologist, described the large extracellular red and green respiratory proteins of a number of polychaete annelids in 1872, but came to the conclusion they were distinctly different proteins from vertebrate hemoglobins and even gave them a different name, erythrocruorin. Although several researchers, including Keilin and Hartree (1951), have pointed out remarkable similarities between annelid and vertebrate heme-containing respiratory proteins and recommended that they all be referred to as hemoglobins, nonvertebrate hemoglobins, especially the extracellular ones, did not receive as much scrutiny as vertebrate and particularly human hemoglobins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Afonso AM, Arrieta MR, Neves AG (1976) Characterization of the hemoglobin of Biomphalaria glabrata as a glycoprotein. Biochim Biophys Acta 439: 77–81

    PubMed  CAS  Google Scholar 

  • Afonso AM, Santoro M, Neves A (1980) Glycoprotein from the hemoglobin of Biomphalaria glabrata, partial characterization. Comp Biochem Physiol 67B:143–146

    CAS  Google Scholar 

  • Almeida AP, Neves AG (1974) The hemoglobin of Biomphalaria glabrata: chemical composition and some physicochemical properties. Biochim Biophys Acta 371: 140– 146

    PubMed  CAS  Google Scholar 

  • Antoine M, Niessing J (1984) Intron-less globin genes in the insect Chironomus thummi thummi. Nature (London) 310: 795–798

    CAS  Google Scholar 

  • Antonini E, Chiancone E (1977) Assembly of multisubunit respiratory proteins. Ann Rev Biophys Bioeng 6: 239–271

    CAS  Google Scholar 

  • Antonini E, Rossi-Fanelli A, Caputo A (1962) Studies on chlorocruorin. II. Some physicochemical properties of Spirographis chlorocruorin. Arch Biochem Biophys 97: 343–350

    PubMed  CAS  Google Scholar 

  • Ar A, Schejter A (1970) Isolation and properties of the hemoglobin of the clam shrimp Cyzicus hierosolymitranus (S. Fischer). Comp Biochem Physiol 33: 481–490

    PubMed  CAS  Google Scholar 

  • Arp A, Childress J, Vetter R (1987) The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia pachyptila, is the extracellular haemoglobin. J Exp Biol 128: 139–158

    CAS  Google Scholar 

  • Bannister JV, Bannister WH, Anastasi A, Wood EJ (1976) Isolation, characterization and oxygen equilibrium of an extracellular hemoglobin from Eunice aphroditois. Biochem J 159: 35–42

    PubMed  CAS  Google Scholar 

  • Boilly PB, Sean KE (1979) Localisation du tissu hematopoietique des les annelides polychaetes. Arch Anat Microsc 68: 257–270

    CAS  Google Scholar 

  • Bowen ST, Morse HM, Waring G, Poon MC (1976) The hemoglobins of Artemia salina. III. Characterization. Comp Biochem Physiol 55B: 99–103

    Google Scholar 

  • Braun V, Crichton R, Braunitzer G (1968) Über monomere und dimere Insekten- Haemoglobine (Chironomus thummi). Hoppe-Seyler’s Z Physiol Chem 349: 197–210

    CAS  Google Scholar 

  • Braunbeck T, Dales RP (1985) The ultrastructure of the heart-body and extravasal tissue in the polychaete annelids Neoamphitrite figulus and Arenicola marina. J Mar Biol Assoc UK 65: 653–662

    Google Scholar 

  • Breton-Gorius J (1963) Etude au microscope electronique des cellules chlorocroenes d’Arenicola marina L. Ann Sci Nat (Zool) 5: 211–272

    Google Scholar 

  • Brouwer M, Wolters M, Van Bruggen EFJ (1976) Proteolytic fragmentation of Helix pomatia α-hemocyanin: structural domains in the polypeptide chains. Biochemistry 15: 2618–1623

    PubMed  CAS  Google Scholar 

  • Bunn F, Forget B (1986) Hemoglobin: molecular, genetic and clinical aspects. Saunders, Philadelphia, pp 169–201

    Google Scholar 

  • Chiancone E, Vecchini P, Rossi Fanelli R, Antonini E (1972) Studies on erythrocruorin. II. Dissociation of earthworm erythrocruorin. J Mol Biol 70: 72–84

    Google Scholar 

  • Chiancone E, Brenowitz M, Ascoli F, Bonaventura C, Bonaventura J (1980) Amphitrite ornata erythrocruorin. I. Structural properties and characterization of subunit interaction. Biochim Biophys Acta 623: 146–162

    PubMed  CAS  Google Scholar 

  • Chiancone E, Vecchini P, Verzili D, Ascoli F, Antonini E (1981) Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis: structural and functional properties. J Mol Biol 152: 577–592

    PubMed  CAS  Google Scholar 

  • Chiancone E, Vecchini P, Verzili D, Ascoli F (1984) Assembly of erythrocruorin from earthworm Octolasium complanatum. J Mol Biol 172: 545–558

    PubMed  CAS  Google Scholar 

  • Chung MCM, Ellerton HD (1979) The physico-chemical and functional properties of extracellular respiratory haemoglobins and chlorocruorins. Prog Biophys Mol Biol 35: 53–102

    PubMed  CAS  Google Scholar 

  • Coletta M, Facioni G, Concetti A, Ascoli F, Brunori M (1986) Ligand-dependent behavior of the hemoglobin from the ascarid Parascaris equorum. Biochim Biophys Acta 870: 169–175

    CAS  Google Scholar 

  • Crewe AV, Crewe DA, Kapp OH (1984) An exact three-dimensional reconstruction of a biological macromolecule from a restricted number of projections. Ultramicroscopy 13: 365–372

    PubMed  CAS  Google Scholar 

  • Dales RP (1965) Iron compounds in the heart body of the terebellid polychaete Neoamphitrite figules. J Mar Biol Assoc UK 45: 341–351

    CAS  Google Scholar 

  • Dales R, Pell T (1970) Cytological aspects of hemoglobin and chlorocruorin synthesis in polychaete annelids. Z Zellforsch 109: 30–32

    Google Scholar 

  • Dangott LJ, Terwilliger RC (1979) Structural studies of a branchiopod crustacean (Lepidurus bilobatus) extracellular hemoglobin: evidence for oxygen binding domains. Biochim Biophys Acta 579: 452–461

    PubMed  CAS  Google Scholar 

  • Dangott LJ, Terwilliger RC (1980) The subunit structure of Daphnia pulex hemoglobin. Comp Biochem Physiol 67B: 301–306

    CAS  Google Scholar 

  • Dangott L, Terwilliger RC (1981) Arthropod extracellular hemoglobins: structural and functional properties. Comp Biochem Physiol 70B: 549–557

    CAS  Google Scholar 

  • Dangott L, Terwilliger RC, Puett D (1982) Secondary and tertiary structure of Cardita affinis extracellular hemoglobin and its isolated domains. Am Zool 23: 934

    Google Scholar 

  • Daniel E (1983) Subunit structure of arthropod erythrocruorins. Life Chem Rep Suppl 1: 157–165

    CAS  Google Scholar 

  • Darawshe S, Tsafadyah Y, Daniel E (1987) Quaternary structure of erythrocruorin from the nematode Ascaris suum. Biochem J 242: 689–694

    PubMed  CAS  Google Scholar 

  • Davenport H (1949) The haemoglobins of Ascaris lumbricoides. Proc R Soc Lond B 136: 155–170

    Google Scholar 

  • David MM, Schejter A, Daniel E, Ar A, Ben-Shaul Y (1977) Subunit structure of hemoglobin from the clam shrimp Cyzicus. J Mol Biol 111: 211–214

    PubMed  CAS  Google Scholar 

  • Delkeskamp E (1964) Über den Porphyrinstoffwechsel bei Lumbricus terrestris L. Z Vgl Physiol 48: 400–412

    CAS  Google Scholar 

  • DiStefano L, Mezzasalma V, Piazzese S, Russo GC (1977) The subunit structure of chlorocruorin. FEBS Lett 79: 337–339

    CAS  Google Scholar 

  • Dixon B, Walker B, Kimmins W, Pohajdak B (1991) Isolation and sequencing of a cDNA for an unusual hemoglobin from the parasitic nematode Pseudoterranova decipiens. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Eernisse DJ, Terwilliger NB, Terwilliger RC (1988) The red foot of a lepidopleurid chiton: evidence for tissue hemoglobins. Veliger 30: 244–247

    Google Scholar 

  • Figueiredo EA, Gomez MV, Heneine J, Santos I, Hargreaves F (1973) Isolation and physicochemical properties of the hemoglobin of Biomphalaria glabrata (Mollusca, planorbidae). Comp Biochem Physiol 44B: 481–491

    Google Scholar 

  • Fox HM (1949) On chlorocruorin and haemoglobin. Proc R Soc Lond B 136: 378–388

    PubMed  CAS  Google Scholar 

  • Fox HM (1951) Oxygen affinities of respiratory blood pigments in Serpula. Nature (London) 161: 112

    Google Scholar 

  • Fox HM (1953) Haemoglobin and biliverdin in parasitic cirripede crustacea. Nature (London) 171: 162–163

    CAS  Google Scholar 

  • Fox HM (1957) Haemoglobin in the crustacea. Nature (London) 179: 148

    CAS  Google Scholar 

  • Friedmann MM, Weiss L (1980) An electron microscopic study of hemoglobin synthesis in the marine annelid Amphitrite ornata (Polychaeta. Terebellidae). J Morphol 164: 121–138

    Google Scholar 

  • Fushitani K, Riggs A (1988) Non-heme protein in the giant extracellular hemoglobin of the earthworm Lumbricus terres tris. Proc Natl Acad Sci USA 85: 9451–9463

    Google Scholar 

  • Fushitani K, Matsuura S, Riggs A (1988) The amino acid sequence of chains a, b and c that form the trimer subunit of the extracellular hemogobin of Lumbricus terrestris. J Biol Chem 263: 6502–6517

    PubMed  CAS  Google Scholar 

  • Garey J, Riggs A (1983) Isolation of RNA from red cells of Urechis caupo. Life Chem Rep Suppl 1: 387–391

    CAS  Google Scholar 

  • Garlick R (1980) Structure of annelid high molecular weight hemoglobins (erythrocruorins). Am Zool 10: 69–77

    Google Scholar 

  • Garlick R, Riggs A (1981) Purification and structure of the polypeptide chains of earthworm hemoglobin. Arch Biochem Biophys 208: 563–573

    PubMed  CAS  Google Scholar 

  • Garlick R, Riggs A (1982) The amino acid sequence of a major polypeptide chain of earthworm hemoglobin. J Biol Chem 257: 9005–9015

    PubMed  CAS  Google Scholar 

  • Geelen D, Moens L, Heip J, Hertsens R, Donceel K, Clauwaert J (1982) The structure of Artemia sp. haemoglobins-1. Isolation and characterization of oxygen binding domains obtained by limited tryptic digestion. Int J Biochem 14: 991–1001

    PubMed  CAS  Google Scholar 

  • Ghiretti-Magaldi A, Zanotti G, Salvato B, Tognon G, Mezzasalma V, DiStefano L (1983) Electron microscopy and image analysis of Spirographis Spallanzani chlorocruorin. Life Chem Rep Suppl 1: 193–196

    CAS  Google Scholar 

  • Ghiretti-Magaldi A, Zanotti G, Tognon G, Mezzasalma V (1985) The molecular architecture of the extracellular haemoglobin of Ophelia bicornis. Biochem Biophys Acta 829: 144–149

    CAS  Google Scholar 

  • Goodman M, Braunitzer G, Kleinschmidt T, Aschauer H (1983) The analysis of a protein polymorphism. Hoppe-Seyler’s Z Physiol Chem 354: 201–217

    Google Scholar 

  • Goodman M, Pedwaydon J, Czelusniak J, Suzuki T, Gotoh T, Moens L, Shishikura F, Walz D, Vinogradov S (1988) An evolutionary tree for invertebrate globin sequences. J Mol Evol 27: 236–249

    PubMed  CAS  Google Scholar 

  • Gotoh T, Suzuki T (1990) Molecular assembly and evolution of multisubunit extracellular annelid hemoglobins. Zool Sci 7: 1–16

    CAS  Google Scholar 

  • Grinich N, Terwilliger RC (1980) The quaternary structure of an unusually high molecular weight intracellular hemoglobin from the bivalve mollusc Barbatia reeveana. Biochem J 189: 1–8

    PubMed  CAS  Google Scholar 

  • Guerritore D, Zito R (1971) The terminal groups of chlorocruorin. Biochim Biophys Acta 229: 720–723

    PubMed  CAS  Google Scholar 

  • Harrington JP, Pandolfelli ER, Herskovits TT (1973) Solution studies on heme proteins. Circular dichroism and optical rotation of Lumbricus terrestris and Glycera dibranchiata hemoglobins. Biochim Biophys Acta 328: 61–73

    PubMed  CAS  Google Scholar 

  • Heip J, Moens L, Hertsens R, Wood EJ, Heyligen H, Van Broeckhoven A, Vrints R, de Chaffoy D, Kondo M (1980) Artemia extracellular hemoglobins: ontogeny, structure and in vivo radiolabeling. In: Personne GT, Sorgeloos P, Rods O, Jaspers E (eds) The brine shrimp Artemia, vol 2. Universa Press, Belgium, pp 427–448

    Google Scholar 

  • Hendrickson W, Royer W (1986) Principles in the assembly of annelid erythrocruorins. Biophys J 49: 177–187

    PubMed  CAS  Google Scholar 

  • Herskovits T, Hamilton M (1990) The hemoglobin of the aquatic snail Planorbella duryi (Wetherby). Comp Biochem Physiol 95B: 321–326

    CAS  Google Scholar 

  • Hoffmann RJ, Mangum CP (1970) The function of coelomic cell hemoglobin in the polychaete Glycera dibranchiata. Comp Biochem Physiol 36: 211–228

    PubMed  CAS  Google Scholar 

  • Horne FR, Beyenbach KW (1971) Physiological properties of hemoglobin in the branchiopod crustacean Triops. Am J Physiol 220: 1875–1881

    PubMed  CAS  Google Scholar 

  • Horne FR, Beyenbach KW (1974) Physicochemical features of hemoglobin of the crustacean, Triops. Arch Biochem Biophys 161: 369–374

    PubMed  CAS  Google Scholar 

  • Ilan E, Daniel E (1979a) Structural diversity of Arthropod extracellular haemoglobins. Comp Biochem Physiol 63B: 303–308

    CAS  Google Scholar 

  • Ilan E, Daniel E (1979b) Haemoglobin from the tadpole shrimp, Lepidurus apus lubbocki: characterization of the molecule and determination of the number of polypeptide chains. Biochem J 183: 325–330

    PubMed  CAS  Google Scholar 

  • Ilan E, David M, Daniel E (1981) Erythrocruorin from the crustacean Caenestheria inopinata. Quaternary structure and arrangement of subunits. Biochemistry 20: 6190–6194

    PubMed  CAS  Google Scholar 

  • Ilan E, Weisselberg E, Daniel E (1982) Erythrocruorin from the water flea, Daphnia magna. Biochem J 207: 297–303

    PubMed  CAS  Google Scholar 

  • Ilan E, Hammel I, David MM, Daniel E (1986) Erythrocruorin from the aquatic snail Helisoma trivolvis. Quaternary structure and arrangements of subunits. Biochemistry 25: 6551–6554

    CAS  Google Scholar 

  • Jhiang S, Garey J, Riggs A (1988) Exon-intron organization in genes of earthworm and vertebrate globins. Science 240: 334–336

    PubMed  CAS  Google Scholar 

  • Jones ML (1980) Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proc Biol Soc Wash 93: 1295–1313

    Google Scholar 

  • Jones ML (1985) On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bull Biol Soc Wash 6: 117–158

    Google Scholar 

  • Kapp OH, Crewe AV (1984) Comparison of the molecular size and shape of the extracellular hemoglobins of Tubifex tubifex and Lumbricus terrestris. Biochim Biophys Acta 789: 294–301

    CAS  Google Scholar 

  • Kapp OH, Ohtsuki M, Crewe AV, Vinogradov SN (1982) Scanning transmission electron microscopy of extracellular invertebrate hemoglobins. Biochim Biophys Acta 704: 546–548

    CAS  Google Scholar 

  • Kapp O, Mainwaring M, Vinogradov S, Crewe A (1987) Scanning transmission electron microscopic examination of the hexagonal bilayer structures formed by the reassociation of three of the four subunits of the extracellular hemoglobin of Lumbricus terrestris. Proc Natl Acad Sci USA 84: 7532–7536

    PubMed  CAS  Google Scholar 

  • Keilin D, Hartree E (1951) Relationship between hemoglobin and erythrocruorin. Nature (London) 168: 266–269

    CAS  Google Scholar 

  • Kennedy GY, Dales RP (1958) The function of the heart-body in polychaetes. J Mar Biol Assoc UK 37: 15–31

    Google Scholar 

  • Krissansen G, Trotman C, Tate WP (1981) A novel protease may explain widely different models for the structure of Artemia salina hemoglobin. Biochem Biophys Acta 671: 104–108

    CAS  Google Scholar 

  • Lankester ER (1872) A contribution to the knowledge of hemoglobin. Proc R Soc Lond B 21: 70–80

    Google Scholar 

  • Lee DL, Smith MH (1965) Haemoglobin in parasitic animals. Exp Parasitol 16: 392–424

    PubMed  CAS  Google Scholar 

  • Levin O (1963) Electron microscope observations on some 60S erythrocruorins and their split products. J Mol Biol 6: 95–101

    PubMed  CAS  Google Scholar 

  • Lightbody J, Quabar A, Mainwaring M, Young J, Walz D, Vinogradov S, Gotoh T (1988) Immunological relatedness of annelid extracellular hemoglobins and chlorocruorins. Comp Biochem Physiol 90B: 301–305

    CAS  Google Scholar 

  • Mainwaring M, Lugo S, Fingal P, Kapp O, Vinogradov S (1986) The dissociation of the extracellular hemoglobin of Lumbricus terrestris at acid pH and its reassociation at neutral pH. J Biol Chem 261: 10899–10908

    PubMed  CAS  Google Scholar 

  • Mangum CP (1976) Primative respiratory adaptations. In: Newell PC (ed) Adaptation to environment: physiology of marine animals. Butterworths, London, pp 191–278

    Google Scholar 

  • Mangum CP (1983) Oxygen transport in the blood. In Mantel LH (ed) The biology of crustacea Vol. 5 Internal anatomy and physiological regulation. Academic Press, New York, pp 373–429

    Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248: R505–R514

    PubMed  CAS  Google Scholar 

  • Mangum CP, Dales R (1965) Products of haem synthesis in polychaetes. Comp Biochem Physiol 15: 237–2257

    PubMed  CAS  Google Scholar 

  • Manning A, Ting G, Mansfield B, Trotman C, Tate W (1986) The isolation and faithful translation of Artemia naupliar haemoglobin mRNA. Biochem Int 12: 715–724

    CAS  Google Scholar 

  • Manning A, Trotman C, Tate W (1990) Evolution of a polymeric globin in the brine shrimp Artemia. Nature (London) 348: 653–656

    CAS  Google Scholar 

  • Manwell C (1978) Haemoglobin in the Australian anostracan Parartemia zietziana: evolutionary strategies of conformity vs. regulation. Comp Biochem Physiol 59A: 37–44

    CAS  Google Scholar 

  • Manwell C, Southward EC, Southward AM (1966) Preliminary studies on haemoglobin and other proteins of the Pogonophora. Mar Biol Assoc UK 46: 115–124

    CAS  Google Scholar 

  • Markl J, Decker H, Stocker W, Savel A, Linzen B, Schutter W, Van Bruggen EFJ (1981) On the role of dimeric subunits in the quaternary structure of arthropod hemocyanin. Hoppe-Seyler’s Z Physiol Chem 362: 185–188

    PubMed  CAS  Google Scholar 

  • Messerschmidt U, Wilhelm P, Pilz I, Kapp OH, Vinogradov S (1983) The molecular size and shape of the extracellular hemoglobin of Nephtys incisa. Biochim Biophys Acta 742: 366–373

    CAS  Google Scholar 

  • Mezzasalma V, DiStefano L, Piazzesi A, Zagra M, Ghiretti-Magaldi A, Carbone R, Salvato B (1983) Structural studies on Spirographis spallanzani chlorocruorin. Life Chem Rep Suppl 1: 187–191

    CAS  Google Scholar 

  • Mezzasalma V, DiStefano L, Piazzesi A, Zagra M, Sabesto B, Tognon G, Ghiretti- Magaldi A (1985) Physicochemical and structural properties of the extracellular haemoglobin of Ophelia bicornis. Biochim Biophys Acta 829: 135–143

    CAS  Google Scholar 

  • Mezzasalma V, Tognon G, Ghiretti-Magaldi A (1990) Biosynthesis of chlorocruorin in Spirographis spallanzanii. Ultrastructural aspects. In: Preaux G (ed) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 487–490

    Google Scholar 

  • Moens L, Kondo M (1976) The structure of Artemia salina hemoglobins: a comparative characterisation of four naupliar and adult hemoglobins. Eur J Biochem 67: 397–402

    PubMed  CAS  Google Scholar 

  • Moens L, Kondo M (1978) Evidence for a dimeric form of Artemia salina extracellular hemoglobins with high-molecular weight subunits. Eur J Biochem 82: 65–72

    PubMed  CAS  Google Scholar 

  • Moens L, Geelen D, Van Hauwaert ML, Wolf G, Blust R, Witters R, Lontie R (1984) The structure of Artemia sp. haemoglobin. Biochem J 223: 861–869

    PubMed  CAS  Google Scholar 

  • Moens L, Van Hauwaert M, De Smet K, Geelen D, Verpooten G, Van Beeuman J, Wodak S, Alard P, Trotman C (1988) A structural domain of the covalent polymer globin chain of Artemia. J Biol Chem 263: 4679–4685

    PubMed  CAS  Google Scholar 

  • Moens L, Van Hauwaert M, DeSmet K, Ver Donck K, Van de Peer U, Van Beeuman J, Wodak S, Alard P, Trotman C (1990) Structural interpretation of the amino acid sequence of a second domain from the Artemia covalent polymer globin. J Biol Chem 265: 14285–14291

    PubMed  CAS  Google Scholar 

  • Moyle P, Cech J (1982) Fishes: an introduction to ichthyology. Prentice Hall, New Jersey, p 52

    Google Scholar 

  • Nagel RL (1985) Molluscan hemoglobins. In: Cohen WD (ed) Blood cells of marine invertebrates. Alan R Liss, New York, pp 227–247

    Google Scholar 

  • Ochiai T, Enoki Y, Usuki I (1989) Physiochemical properties of the extracellular hemoglobin from the planorbid snail, Indoplanorbis exustus. Comp Biochem Physiol 93B: 935–940

    CAS  Google Scholar 

  • Okazaki T, Briehl R, Wittenberg J (1965) The hemoglobin of Ascaris perienteric fluid. II. Molecular weight and subunits. Biochem Biophys Acta 111: 496–502

    PubMed  CAS  Google Scholar 

  • Okazaki T, Wittenberg B, Briehl R, Wittenberg J (1967) The hemoglobin of Ascaris body walls. Biochem Biophys Acta 140: 258–265

    PubMed  CAS  Google Scholar 

  • Osmulski P, Leyko W (1986) Structure, function and physiological role of Chironomus hemoglobin. Comp Biochem Physiol 85B: 701–722

    CAS  Google Scholar 

  • Peeters K, Mertens J, Moens L, Van Hauwaert M, Hebert P (1990) Purification and partial characterization of the hemoglobin and globin chains of Daphnia pulex. In: Preaux G (ed) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 25–28

    Google Scholar 

  • Perez C, Bloch-Raphael C (1946) Note preliminaire sur la presence d’un pigment respiratoire chez le Septosaccus Cuenoti (Dubosa). CR Acad Sci Paris 293: 840–842

    Google Scholar 

  • Pfaffenbach T, Riggs A (1990) Hemoglobin of the clam, Cardita affinis: studies of protein structure and cloning of the gene. In: Preaux G (ed) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 53–56

    Google Scholar 

  • Pilz I, Schwarz E, Vinogradov SN (1980) Small angle X-ray studies of Lumbricus terrestris hemoglobin. Int J Biol Macromol 2: 279–283

    CAS  Google Scholar 

  • Pilz I, Schwartz E, Tsfadia Y, Daniel E (1988) Small angle X-ray study on the quaternary structure of erythrocruorin from Helisoma trivolvis. Int J Biol Macromol 10: 353–355

    CAS  Google Scholar 

  • Polidori G, Mainwaring M, Kosinski T, Schwarz C, Fingal R, Vinogradov S (1984) The dissociation of the extracellular hemoglobin of Tubifex tubifex at extremes of pH and its reassociation upon return to neutrality. Arch Biochem Biophys 233: 800–814

    PubMed  CAS  Google Scholar 

  • Read KRH (1966) Molluscan hemoglobins and myoglobins. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca, vol 2. Academic Press, New York, pp 209–232

    Google Scholar 

  • Riggs A (1990) Studies of invertebrate hemoglobins: structure, function and evolution. In: Preaux G (ed) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 9–16

    Google Scholar 

  • Riggs A (1991) Aspects of the origin and evolution of non-vertebrate hemoglobins. Am Zool (in press)

    Google Scholar 

  • Riggs AF, Riggs CK, Lin RJ, Domdey H (1986) Cloning of the cDNA for the globin from the clam, Barbatia reeveana. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Heidelberg Berlin New York pp 473–476

    Google Scholar 

  • Riggs CK, Riggs A (1990) cDNA-derived amino acid sequences of single and two-domain globins from the clam Barbatia reeveana. In: Preaux G (ed) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 57–60

    Google Scholar 

  • Roche J, Bessis M, Thiery JP (1960) Etude de l’hemoglobin plasmatique de quelque annelids au microscope electronique. Biochem Biophysic Acta 41: 182–184

    CAS  Google Scholar 

  • Rossi-Fanelli M, Chiancone E, Vecchini P, Antonini E (1970) Studies on erythrocruorin. I. Physiocochemical properties of earthworm erythrocruorin. Arch Biochem Biophys 141: 278–283

    PubMed  CAS  Google Scholar 

  • Royer W, Hendrickson W (1988) Molecular symmetry of Lumbricus erythrocruorin. J Biol Chem 263: 13762–13765

    PubMed  CAS  Google Scholar 

  • Royer W, Love W, Fenderson FF (1985) Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds. Nature (London) 316:277– 280

    CAS  Google Scholar 

  • Royer W, Hendrickson W, Love W (1987) Crystals of Lumbricus erythrocruorin. J Mol Biol 197: 149–153

    PubMed  CAS  Google Scholar 

  • Schin K, Laufer H, Clark RM (1979) Temporal specificity of hemoglobin synthesis in the fat body of Chironomus thummi during development. J Exp Zool 210: 265–275

    CAS  Google Scholar 

  • Schlom J, Vinogradov S (1973) A study of the subunit structure of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem 248: 7904–7912

    Google Scholar 

  • Schmidt E, Keyl H, Henkein T (1988) In situ localization of two haemoglobin gene clusters in the chromosomes of 13 species of Chironomus. Chromosoma 96: 353–359

    Google Scholar 

  • Shafie S, Vinogradov S, Larson L, McCormick J (1976) RNA and protein synthesis in the nucleated erythrocytes of Glycera dibranchiata. Comp Biochem Physiol 53B: 85–88

    Google Scholar 

  • Shirley SM, Shirley TC, Meyers T (1986) Hemolymph responses of Alaskan king crabs to rhizocephalan parasitism. Can J Zool 64: 1774–1781

    CAS  Google Scholar 

  • Shishikura F, Mainwaring M, Yurewicz E, Lightbody J, Walz D, Vinogradov S (1986) A disulfide-bonded trimer of myoglobin-like chains is the principal subunit of the extracellular hemoglobin of Lumbricus terrestris. Biochim Biophys Acta 869: 314–321

    PubMed  CAS  Google Scholar 

  • Shishikura F, Snow J, Gotoh T, Vinogradov S, Walz D (1987) Amino acid sequence of the monomer subunit of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem 262: 3123–3131

    PubMed  CAS  Google Scholar 

  • Sminia T, Boer HH, Niemantsverdriet A (1972) Haemoglobin producing cells in freshwater snails. Z Zellforsch 135: 563–568

    PubMed  CAS  Google Scholar 

  • Sugano H, Hoshi T (1971) Purification and properties of blood hemoglobins from the freshwater Cladocera, Moina macrocopa and Daphnia magna. Biochem Biophys Acta 229: 349–358

    PubMed  CAS  Google Scholar 

  • Suzuki T, Gotoh T (1986) The complete amino acid sequence of giant multisubunit hemoglobin from the polychaete Tylorrhynchus heterochaetus. J Biol Chem 261: 9257– 9267

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takagi T, Furukohri T, Gotoh T (1983) Separation of constituent polypeptide chains containing heme from extracellular hemoglobin of the polychaete Perinereis brevicirrus (Grube). Comp Biochem Physiol 75B: 567–570

    CAS  Google Scholar 

  • Suzuki T, Takagi T, Ohta S (1988) N-terminal amino acid sequence of the deep-sea tube worm haemoglobin remarkably resembles that of annelid haemoglobin. Biochem J 253: 541–545

    Google Scholar 

  • Suzuki T, Takagi T, Ohta S (1990) Primary structure of a linker subunit of the tube worm 3000kDa hemoglobin. J Biol Chem 265: 1551–1555

    PubMed  CAS  Google Scholar 

  • Svedberg T (1933) Sedimentation constants, molecular weights and isoelectric points of the respiratory proteins. J Biol Chem 103: 311–325

    Google Scholar 

  • Terwilliger NB (1991) Arthropod (Cyamus scammoni, Amphipoda) hemoglobin structure and function. In: Vinogradov S, Kapp O (eds) Structure and function of invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 59–63

    Google Scholar 

  • Terwilliger NB, Terwilliger RC (1978) Oxygen binding domains of a clam (Cardita borealis) extracellular hemoglobin. Biochem Biophys Acta 537: 77–85

    PubMed  CAS  Google Scholar 

  • Terwilliger NB, Terwilliger RC (1981) Structural similarity between extracellular hemoglobins from a deep sea Vestimentifera and annelids. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins, structure, active site and function. Dekker, New York, pp 369–371

    Google Scholar 

  • Terwilliger NB, Terwilliger RC (1984) Hemoglobin from the “Pompeii worm”, Alvinella pompejana, an annelid from a deep sea hot hydrothermal vent environment. Mar Biol Lett 5: 191–201

    CAS  Google Scholar 

  • Terwilliger NB, Terwilliger RC, Schabtach E (1976) The quaternary structure of a molluscan (Helisoma trivolvis) extracellular hemoglobin. Biochem Biophys Acta 453: 101–110

    PubMed  CAS  Google Scholar 

  • Terwilliger NB, Terwilliger RC, Schabtach E (1985) Intracellular respiratory proteins of Sipuncula, Echiura and Annelida. In: Cohen W (ed) Blood cells of marine invertebrates. Alan R Liss, New York, pp 193–225

    Google Scholar 

  • Terwilliger RC (1978) The respiratory pigment of the serpulid polychaete, Serpula vermicularis L. Strueture of its chlorocruorin and hemoglobin (erythrocruorin). Comp Biochem Physiol 61B: 463–469

    CAS  Google Scholar 

  • Terwilliger RC (1980) Structures of invertebrate hemoglobins. Am Zool 20: 53–67

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB (1981) Oxygen binding domains in invertebrate hemoglobins: studies of a clam extracellular hemoglobin subunit. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins, structure, active site and function. Dekker New York, pp 275–284

    Google Scholar 

  • Terwilliger RC, Terwilliger NB (1983) Oxygen binding domains in invertebrate hemoglobins. Life Chem Rep Suppl 1: 227–238

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB (1985a) Molluscan hemoglobins. Comp Biochem Physiol 81B: 255–261

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB (1985b) Respiratory proteins of hydrothermal vent animals. Bull Biol Soc Wash 6: 273–287

    Google Scholar 

  • Terwilliger RC, Terwilliger NB, Roxby R (1975a) Quaternary structure of Pista pacifica vascular hemoglobin. Comp Biochem Physiol 50B: 225–232

    Google Scholar 

  • Terwilliger RC, Garlick RL, Terwilliger NB, Blair D (1975b) Molecular weight of Eudistylia vancouverii chlorocruorin and its subunits. Biochim Biophys Acta 400: 302–309

    PubMed  CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB, Schabtach E (1976) Comparison of chlorocruorin and annelid hemoglobin quaternary structures. Comp Biochem Physiol 55A: 51–55

    Google Scholar 

  • Terwilliger RC, Terwilliger NB, Bonaventura C, Bonaventura J (1977a) Oxygen binding domains of Helisoma trivolvis hemoglobin. Biochim Biophys Acta 494: 416–425

    PubMed  CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB, Schabtach E, Dangott L (1977b) Erythrocruorins of Euzonus mucronata Treadwell: evidence for a dimeric annelid extracellular hemoglobin. Comp Biochem Physiol 57A: 143–149

    Google Scholar 

  • Terwilliger RC, Terwilliger NB, Schabtach E (1978) Extracellular hemoglobin of a marine clam, Cardita borealis: an unusual hemoglobin quaternary structure. Comp Biochem Physiol 59B: 9–14

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB, Schabtach E (1980) The structure of hemoglobin from an unusual deep sea worm (Vestimentifera). Comp Biochem Physiol 65B: 531–535

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger N, Bonaventura C, Bonaventura J, Schabtach E (1985) Structural and functional properties of hemoglobin from the vestimentiferan Pogonophora Lamellibrachia. Biochim Biophys Acta 829: 27–33

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB, Schabtach E (1986) Hemoglobin from the parasitic barnacle, Briarosaccus callosus. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 125–127

    Google Scholar 

  • Terwilliger RC, Terwilliger NB, Hughes GM, Southward AJ, Southward EC (1987) Studies on the haemoglobins of the small Pogonophora. J Mar Biol Assoc UK 67: 219–234

    CAS  Google Scholar 

  • Trewitt P, Saffarini D, Bergtrom G (1988) Multiple clustered genes of the haemoglobin VIIB subfamily of Chironomus thummi thummi (Diptera). Gene 69: 91–100

    PubMed  CAS  Google Scholar 

  • Tsfadia Y, Daniel E (1983) A study of erythrocruorin from the nematode Parascaris equorum. Life Chem Rep Suppl 1: 221–222

    Google Scholar 

  • Tsfadia Y, Shaked I, Daniel E (1990) Molecular symmetry and arrangement of subunits in eyrthrocruorin from Caenestheria inopinata. In: Preaux G (ed) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 255–258

    Google Scholar 

  • Vafopoulou-Mandalos X, Laufer H (1982) The ontogeny of multiple hemoglobins in Chironomus thummi (Diptera): the effects of a compound with juvenile hormone activity. Dev Biol 92: 135–143

    PubMed  CAS  Google Scholar 

  • Van Bruggen EFJ, Weber RE (1974) Erythrocruorin with anomalous quaternary structure from the polychaete Oenone fulgida. Biochim Biophys Acta 359: 210–212

    PubMed  Google Scholar 

  • Van Holde KE, Miller K (1982) Haemocyanins. Q Rev Biophys 15: 1–129

    PubMed  Google Scholar 

  • Vinogradov SN (1985) The structure of erythrocruorins and chlorocruorins, the invertebrate extracellular hemoglobins. In: Lamy J, Truchot JP, Gilles R (eds) Respiratory pigments in animals. Springer, Berlin Heidelberg New York, pp 1–20

    Google Scholar 

  • Vinogradov SN (1990) Quaternary structure of hexagonal bilayer hemoglobins and chlorocruorins. In: Preaux G (ed) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 205–212

    Google Scholar 

  • Vinogradov SN, Orii Y (1980) Subunits of Potamilla leptochaeta chlorocruorin. Comp Biochem Physiol 67B: 183–185

    CAS  Google Scholar 

  • Vinogradov SN, Shlom JM, Hall BC, Kapp OH, Mizukami H (1977) The dissociation of Lumbricus terrestris hemoglobin: a model of its subunit structure. Biochim Biophys Acta 492: 136–155

    PubMed  CAS  Google Scholar 

  • Vinogradov SN, Shlom JM, Kapp OH, Frossard P (1980) The dissociation of annelid extracellular hemoglobins and their quaternary structure. Comp Biochem Physiol 67B: 1–12

    CAS  Google Scholar 

  • Vinogradov SN, Van Gelderen J, Polidori G, Kapp O (1983) Dissociation of the extracellular hemoglobin of Nephtys incisa. Comp Biochem Physiol 76B: 207–214

    CAS  Google Scholar 

  • Vinogradov SN, Standley PR, Mainwaring MG, Kapp OH, Crewe AV (1985) The molecular size of Myxicola infundibulum chlorocruorin and its subunits. Biochim Biophys Acta 828: 43–50

    PubMed  CAS  Google Scholar 

  • Vinogradov SN, Lugo S, Manwaring M, Kapp O, Crewe A (1986) Bracelet protein: a quaternary structure proposed for the giant extracellular hemoglobin of Lumbricus terrestris. Proc Natl Acad Sci USA 83: 8034–8098

    PubMed  CAS  Google Scholar 

  • Waxman L (1975) The structure of annelid and mollusc hemoglobins. J Biol Chem 250: 3790–3795

    PubMed  CAS  Google Scholar 

  • Weber RE (1978) Respiratory pigments. In: Mill P (ed) Physiology of annelids. Academic Press, New York, pp 393–446

    Google Scholar 

  • Wells RM, Dales RP (1976) Subunit organization in the respiratory proteins of the Polychaeta. Comp Biochem Physiol 54A: 387–394

    Google Scholar 

  • Wittenberg BA, Okazaki T, Wittenberg JB (1965) The hemoglobin of Ascaris perienteric fluid. I. Purification and spectra. Biochim Biophys Acta 111: 485–495

    PubMed  CAS  Google Scholar 

  • Wolf G, Van Pachtenbeke M, Moens L, Van Hauwaert M (1983) Oxygen binding characteristics of Artemia hemoglobin domains. Comp Biochem Physiol 76B: 731–736

    CAS  Google Scholar 

  • Wood E, Chaplin M (1983) Distribution of carbohydrate residues amongst the domains of mollusc multidomain respiratory proteins. Life Chem Rep Suppl 1: 141–142

    Google Scholar 

  • Wood E, Gullick WJ (1979) Planorbis corneus haemoglobin, circular dichroism and susceptibility to proteases. Biochim Biophys Acta 576: 456–465

    PubMed  CAS  Google Scholar 

  • Wood E, Mosby L (1975) Physicochemical properties of Planorbis corneus erythrocruorin. Biochem J 149: 437–445

    PubMed  CAS  Google Scholar 

  • Wood E, Siggens KW (1981) Studies on the biosynthesis of gastropod respiratory pigments. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Dekker, New York, pp 825–829

    Google Scholar 

  • Wood E, Mosby LJ, Robinson MS (1976) Characterization of the extracellular hemoglobin of Haemopsis sanguisana. Biochem J 153: 589–596

    PubMed  CAS  Google Scholar 

  • Wood E, Barker C, Moens L, Jacob W, Heip J, Kondo M (1981) Biophysical characterization of Artemia salina (L.) extracellular haemoglobins. Biochem J 193: 353–359

    PubMed  CAS  Google Scholar 

  • Yager T, Terwilliger NB, Terwilliger RC, Schabtach E, Van Holde K (1982) Organization and physical properties of the giant extracellular hemoglobin of the clam Astarte castenea. Biochim Biophys Acta 709: 194–203

    CAS  Google Scholar 

  • Yamauchi Y, Ochiai T (1984) Dissociation of the extracellular hemoglobin of Daphnia magna. Comp Biochem Physiol 79B: 465–471

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Terwilliger, N.B. (1992). Molecular Structure of the Extracellular Heme Proteins. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics