Skip to main content

Structures of Red Blood Cell Hemoglobins

  • Chapter
Blood and Tissue Oxygen Carriers

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

This review will deal with red blood cell hemoglobins from the lower invertebrates to mammals. In preparing this chapter, I drew heavily on two excellent reviews (Terwilliger 1980; Terwilliger and Terwilliger 1985) that have put the subject of invertebrate hemoglobins in perspective. As will become apparent, Robert Terwilliger and his wife, Nora Terwilliger, have made a great many seminal contributions to our understanding of the diversity of hemoglobins in the animal kingdom. Bob Terwilliger will be sorely missed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbasi A, Wells RMG, Brittain T, Braunitzer G (1988) Primary structure of the hemoglobins from sphenodon (Sphenodon punctatus, Tuatara, Rynchocephalia). Biol Chem Hoppe Seyler 369: 755–764

    PubMed  CAS  Google Scholar 

  • Ackers GK (1980) Energetics of subunit assembly and ligand binding in human hemoglobin. Biophys J 32: 331–346

    PubMed  CAS  Google Scholar 

  • Andersen ME, Gibson QH (1971) A kinetic analysis of the binding of oxygen and carbon monoxide to lamprey hemoglobin. J Biol Chem 246: 4790–4799

    PubMed  CAS  Google Scholar 

  • Arents G, Love WE (1989) Glycera dibranchiata hemoglobin: structure and refinement at 1.5 Å resolution. J Mol Biol 210: 149–161

    PubMed  CAS  Google Scholar 

  • Arnone A (1972) X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxy hemoglobin. Nature (London) 237: 146–149

    CAS  Google Scholar 

  • Arnone A (1974) X-ray studies of the interaction of CO2 with human deoxyhemoglobin. Nature (London) 247: 143–145

    CAS  Google Scholar 

  • Arutyunyan EG, Kuranova IP, Vainshtein BK, Steigemann W (1980) X-ray structural investigation of leghemoglobin/VI. Structure of acetate-ferrileghemoglobin at a resolution of 2.0 Ångstroms. Sov Phys Crystallogr 25(1): 43–58

    Google Scholar 

  • Bardack D, Zangerl R (1968) First fossil lamprey: a record from the Pennsylvanian of Illinois. Science 162: 1265–1267

    PubMed  CAS  Google Scholar 

  • Barra D, Petruzzelli R, Bossa F, Brunori M (1983) Primary structure of hemoglobin from trout (Salmo irideus): amino acid sequence of the ß chain of trout Hb I. Biochim Biophys Acta 742: 72–77

    PubMed  CAS  Google Scholar 

  • Bauer C, Forster M, Gros G, Mosca A, Perrella M, Rollema HS, Vogel D (1981) Analysis of bicarbonate binding to crocodilian hemoglobin. J Biol Chem 256: 8429– 8435

    PubMed  CAS  Google Scholar 

  • Benesch R, Benesch RE (1974a) Homos and heteros among the hemos. Science 185: 905–908

    PubMed  CAS  Google Scholar 

  • Benesch RE, Benesch R (1974b) The mechanism of interaction of red cell organic phosphates with hemoglobin. Adv Protein Chem 28: 211–237

    PubMed  CAS  Google Scholar 

  • Bolognesi M, Onesti S, Gatti B, Coda A, Ascenzi P, Brunori M (1989) Aplysia limacina Myoglobin. Crystallographic analysis at 1.6 Å resolution. J Mol Biol 205: 529–544

    PubMed  CAS  Google Scholar 

  • Bonaventura C, Bonaventura J, Kitto B, Brunori M, Antonini E (1976) Functional consequences of ligand-linked dissociation in hemoglobins from the sea cucumber Molpadia arenicola. Biochim Biophys Acta 428: 779–786

    PubMed  CAS  Google Scholar 

  • Bonaventura C, Sullivan B, Bonaventura J, Bourne S (1977) Anion modulation of negative Bohr effect of hemoglobin from a primitive amphibian. Nature (London) 265: 474–476

    CAS  Google Scholar 

  • Bonaventura J, Kitto GB (1973) Ligand-linked dissociation of some invertebrate hemoglobins. In: Bolis L, Schmidt-Nielsen K, Maddrell HP (eds) Comparative physiology. North-Holland, Amsterdam, pp 493–507

    Google Scholar 

  • Bonner AG, Laursen RA (1977) The amino acid sequence of a dimeric myoglobin from the gastropod mollusc, Busycon canaliculatum L. FEBS Lett 73: 201–203

    PubMed  CAS  Google Scholar 

  • Borgese TA, Harrington JP, Hoffman D, San George RC, Nagel RL (1987) Anadara ovalis hemoglobins: distinct dissociation and ligand binding characteristics. Comp Biochem Physiol 86B: 155–165

    CAS  Google Scholar 

  • Braden BC, Love WE, Royer WE Jr (1990) The 3.0Å structure of the tetrameric hemoglobin from the blood clam Scapharca inaequivalvis. In: Preaux G, Lontie R (eds) Invertebrate di-oxygen carriers. Leuven University Press, Leuven, pp 177–182

    Google Scholar 

  • Braunitzer G, Gehring-Müller R, Hilshmann N, Hilse Kl, Hobam G, Rudloff V, Wittman-Liebold B (1961) Die Konstitution des normalen adulten Humanhaemo- globins. Hoppe-Seylers Z Physiol Chem 325: 283–286

    PubMed  CAS  Google Scholar 

  • Bridges CR, Pelster B, Scheid P (1985) Oxygen binding in blood of Xenopus laevis (amphibia) and evidence against Root effect. Respir Physiol 61: 125–136

    PubMed  CAS  Google Scholar 

  • Briehl RW (1963) The relation between the oxygen equilibrium and aggregation of subunits in lamprey hemoglobin. J Biol Chem 238: 2361–2366

    CAS  Google Scholar 

  • Brittain T (1987) The Root effect. Comp Biochem Physiol 86B: 473–481

    CAS  Google Scholar 

  • Brunori M (1975) Molecular adaptation to physiological requirements: the hemoglobin system of trout. Curr Top Cell Regul 9: 1–39

    PubMed  CAS  Google Scholar 

  • Bucci E, Fronticelli C (1985) Anion Bohr effect of human hemoglobin. Biochemistry 24: 371–376

    PubMed  CAS  Google Scholar 

  • Bunn HF (1971) Differences in the interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins. Science 172: 1049–1050

    PubMed  CAS  Google Scholar 

  • Bunn HF, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. Saunders, Philadelphia

    Google Scholar 

  • Carson WM, Bowers TR, Kitto GB, Hackert ML (1979) Preliminary crystallographic data on monomeric and dimeric hemoglobins from the sea cucumber, Molpadia arenicola. J Biol Chem 254: 7400–7402

    PubMed  CAS  Google Scholar 

  • Chiancone E, Vecchini P, Verzili D, Ascoli F, Antonini E (1981) Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis: structural and functional properties. J Mol Biol 152: 577–592

    PubMed  CAS  Google Scholar 

  • Chu AH, Ackers GK (1981) Mutual effects of protons, NaCl, and oxygen on the dimertetramer assembly of human hemoglobin. J Biol Chem 256: 1199–1205

    PubMed  CAS  Google Scholar 

  • Collman JP, Brauman JI, Halbert TR, Suslick KS (1976) Nature of O2 and CO binding to metallopophyrins and heme proteins. Proc Natl Acad Sci USA 73: 3333–3337

    PubMed  CAS  Google Scholar 

  • Colosimo A, Brunori M, Wyman J (1976) Polysteric linkage. J Mol Biol 100: 47–57

    PubMed  CAS  Google Scholar 

  • Como PF, Thompson EOP (1980a) Multiple hemoglobins of the bivalve mollusc Anadara trapezia. Aust J Biol Sci 33: 643–652

    CAS  Google Scholar 

  • Como PF, Thompson EOP (1980b) Amino acid sequence of the α-chain of the bivalve mollusc Anadara trapezia. Aust J Biol Sci 33: 653–664

    CAS  Google Scholar 

  • Cooke RM, Wright PE (1985a) Differences in amino acid composition and heme electronic structure of the multiple monomeric hemoglobin components of Glycera dibranchiata. Biochim Biophys Acta 832: 357–364

    CAS  Google Scholar 

  • Cooke RM, Wright PE (1985b) Heme orientation in major monomeric hemoglobins of Glycera dibranchiata. Biochim Biophys Acta 832: 365–372

    CAS  Google Scholar 

  • Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, and pathology. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Djangmah JS, Gabbott PA, Wood EJ (1978) Physico-chemical characteristics and oxygen- binding properties of the multiple hemoglobins of the west African blood clam Anadara senili (L). Comp Biochem Physiol 60B: 245–250

    CAS  Google Scholar 

  • Fantl WJ, Di Donato A, Manning JM, Rogers PH, Arnone A (1987) Specifically carboxymethylated hemoglobin as an analogue of carbamino hemoglobin: solution and X-ray studies of carboxymethylated hemoglobin and X-ray studies of carbamino hemoglobin. J Biol Chem 26: 12700–12713

    Google Scholar 

  • Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhemoglobin at 1.74 Å resolution. J Mol Biol 175: 159–174

    PubMed  CAS  Google Scholar 

  • Focesi A Jr, Ogo SH, Matsuura MSA (1990) Dimer-tetramer transition in hemoglobins from Liophis miliaris. II. Evidence with the stripped proteins. Comp Biochem Physiol 96B: 119–122

    CAS  Google Scholar 

  • Freadman MA, Mangum CP (1976) The function of hemoglobin in the arcid clam Noetia ponderosa. I. Oxygenation in vitro and in vivo. Comp Biochem Physiol 53A: 173–179

    Google Scholar 

  • Frier JA, Perutz MF (1977) Structure of human fetal deoxyhemoglobin. J Mol Biol 112: 97–112

    PubMed  CAS  Google Scholar 

  • Fronticelli C (1990) A possible new mechanism of oxygen affinity modulation in mammalian hemoglobins. Biophys Chem 37: 141–146

    PubMed  CAS  Google Scholar 

  • Fronticelli C, Bucci E, Razynska A (1988) Modulation of oxygen affinity in hemoglobin by solvent components: interaction of bovine hemoglobin with 2,3-diphosphoglycerate and monatomic anions. J Mol Biol 202: 343–348

    PubMed  CAS  Google Scholar 

  • Furuta H, Kajita A (1983) Dimeric hemoglobin of the bivalve mollusc Anadara broughtonii: complete amino acid sequence of the globin chain. Biochemistry 22: 917–922

    PubMed  CAS  Google Scholar 

  • Furuta H, Ohe M, Kajita A (1977) Subunit structure of hemoglobins from erythrocytes of the blood clam, Anadara broughtonii. J Biochem 82: 1723–1730

    PubMed  CAS  Google Scholar 

  • Garey JR, Riggs AF (1984) Structure and function of hemoglobin from Urechis caupo. Arch Biochem Biophys 228: 320–318

    PubMed  CAS  Google Scholar 

  • Garey JR, Riggs AF (1986) The hemoglobin of Urechis caupo: the cDNA derived amino acid sequence. J Biol Chem 261: 16446–16450

    PubMed  CAS  Google Scholar 

  • Garlick RL, Williams BJ, Riggs AF (1979) The hemoglobins of Phoronopsis viridis, of the primitive invertebrate phylum Phoronida: characterization and subunit structure. Arch Biochem Biophys 194: 13–23

    PubMed  CAS  Google Scholar 

  • Geraci G, Sada A, Cirotto C (1977) Cooperative, low-molecular-weight dimeric myoglobins from the radular muscle of the gastropod mollusc Nassa mutabilis L. Eur J Biochem 77: 555–560

    PubMed  CAS  Google Scholar 

  • Goodman M, Moore GW, Matsuda G (1975) Darwinian evolution in the genealogy of hemoglobin. Nature (London) 253: 603–608

    CAS  Google Scholar 

  • Grinich NP, Terwilliger RC (1980) The quaternary structure of an unusual high- molecular-weight intracellular hemoglobin from the bivalve mollusc Barbatia reeveana. Biochem J 189: 1–8

    PubMed  CAS  Google Scholar 

  • Hall RE, Terwilliger RC, Terwilliger NB (1981) Hemoglobins and myoglobin of the echurian Urechis caupo (Fisher and Macginitie). Comp Biochem Physiol 70B: 353–357

    CAS  Google Scholar 

  • Harrington JP, Suarez G, Borgese TA, Nagel RL (1978) Subunit interactions of Glycera dibranchiata hemoglobin. J Biol Chem 253: 6820–6825

    PubMed  CAS  Google Scholar 

  • Hendrickson WA (1973) Structural effects accompanying ligand change in crystalline lamprey hemoglobin. Biochim Biophys Acta 310: 32–38

    PubMed  CAS  Google Scholar 

  • Hendrickson WA, Love WE, Murray GC (1968) Crystal forms of lamprey hemoglobin and crystalline transitions between ligand states. J Biol Chem 33: 829–842

    CAS  Google Scholar 

  • Hendrickson WA, Love WE (1971) Structure of lamprey hemoglobin. Nature New Biol 232: 197–203

    PubMed  CAS  Google Scholar 

  • Honzatko RB, Hendrickson WA (1986) Molecular models for the putative dimer of sea lamprey hemoglobin. Proc Natl Acad Sci USA 83: 8487–8491

    PubMed  CAS  Google Scholar 

  • Honzatko RB, Hendrickson WA, Love WE (1985) Refinement of a molecular model for lamprey hemoglobin from Petromyzon marinus. J Mol Biol 184: 147–164

    PubMed  CAS  Google Scholar 

  • Hyman LH (1959) The invertebrates, vol V McGraw-Hill, New York

    Google Scholar 

  • Isaacks RE, Harkness DR (1975) 2,3-Diphosphoglycerate in erythrocytes of chick embryos. Science 189: 393–394

    PubMed  CAS  Google Scholar 

  • Isaacks RE, Harkness DR, White JR (1982) Regulation of hemoglobin function and whole blood oxygen affinity by carbon dioxide and pH in the loggerhead (Caretta caretta) and green sea turtle (Chelonia mydas my das). Hemoglobin 6: 549–568

    PubMed  CAS  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A threedimensional model of the myoglobin molecule obtained by X-ray analysis. Nature (London) 181: 662–666

    CAS  Google Scholar 

  • Kilmartin JV (1976) Interaction of hemoglobin with protons, CO2 and 2,3-diphosphoglycerate. Br Med Bull 32: 209–212

    PubMed  CAS  Google Scholar 

  • Kilmartin JV, Rossi-Bernardi L (1973) Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphate. Physiol Rev 53: 836–890

    PubMed  CAS  Google Scholar 

  • Kilmartin JV, Wootton JF (1970) Inhibition of Bohr effect after removal of C-terminal histidines from hemoglobin β-chains. Nature (London) 228: 766–767

    CAS  Google Scholar 

  • Kolatkar PR, Meador WE, Stanfield RL, Hackert ML (1988) Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo. J Biol Chem 263: 3462–3465

    PubMed  CAS  Google Scholar 

  • Kolatkar PR, Ernst SR, Xu W-X, Meador WE, Hackert ML (1989) Structural comparisons of invertebrate hemoglobins. Am Cryst Assoc Abs 17: 115

    Google Scholar 

  • Leclercq F, Schnek AG, Braunitzer G, Stangl A, Schrank B (1981) Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate: sequence of the hemoglobins of the caiman (Caiman crocodylus), the nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississippiensis). Hoppe-Seylers Z Physiol Chem 362: 1151–1158

    CAS  Google Scholar 

  • Li SL, Riggs A (1970) The amino acid sequence of hemoglobin V from the lamprey, Petromyzon marinus. J Biol Chem 245: 6149–6169

    PubMed  CAS  Google Scholar 

  • Luisi BF, Nagai K (1986) Crystallographic analysis of mutant human hemoglobins made in Escherichia coli. Nature (London) 320: 555–556

    CAS  Google Scholar 

  • Mangum CP, Woodin BR, Bonaventura C, Sullivan B, Bonaventura J (1975) The role of coelomic and vascular hemoglobin in the annelid family Terebellidae. Comp Biochem Physiol 51A: 281–294

    Google Scholar 

  • Mangum CP, Terwilliger RL, Terwilliger NB, Hall R (1983) Oxygen binding intact coelomic cells and extracted hemoglobin of echiurian Urechis caupo. Comp Biochem Physiol 76A: 253–257

    CAS  Google Scholar 

  • Mangum CP, Colacino JM, Vandergon TL (1989) Oxygen binding of single red blood cells of the annelid bloodworm Glycera dibranchiata. J Exp Zool 249: 144–149

    Google Scholar 

  • Matsuura MSA, Ogo SH, Focesi A Jr (1987) Dimer-tetramer transition in hemoglobins from Liophis miliaris. I. Effect of organic polyphosphates. Comp Biochem Physiol 86A: 683–687

    Google Scholar 

  • Matsuura MSA, Fushitani K, Riggs AF (1989) The amino acid sequences of the a and ß chains from hemoglobin from the snake, Liophis miliaris. J Biol Chem 264: 5515–5521

    PubMed  CAS  Google Scholar 

  • Mills RC, Johnson ML, Ackers GK (1976) Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. Biochemistry 15: 5350–5362

    PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88–118

    PubMed  CAS  Google Scholar 

  • Nagai K, Perutz MF, Poyart C (1985) Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Natl Acad Sci USA 82: 7252–7255

    PubMed  CAS  Google Scholar 

  • Ohnoki S, Mitomi Y, Hata R, Satake K (1973) Heterogeneity of hemoglobin from arca (Anadara satowi): molecular weights and oxygen equilibria of arca Hb1 and II. J Biochem 73: 717–725

    CAS  Google Scholar 

  • Padlan EA, Love WE (1974) Three-dimensional structure of hemoglobin from the polychaete annelid Glycera dibranchiata at 2.5 Å resolution. J Biol Chem 249: 4067– 4078

    PubMed  CAS  Google Scholar 

  • Perutz MF (1970) Stereochemistry of cooperative effects in hemoglobin. Nature (London) 228: 726–739

    CAS  Google Scholar 

  • Perutz MF (1979) Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem 48: 327–386

    PubMed  CAS  Google Scholar 

  • Perutz MF (1984) Species adaption in a protein molecule. Adv Protein Chem 36: 213–244

    PubMed  CAS  Google Scholar 

  • Perutz MF (1990) Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu Rev Physiol 52: 1–28

    PubMed  CAS  Google Scholar 

  • Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian hemoglobins. Nature (London) 229: 421–426

    Google Scholar 

  • Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North ACT (1960) Structure of hemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution by X-ray analysis. Nature (London) 183: 416–422

    Google Scholar 

  • Perutz MF, DelPulsinelli P, Ten Eyck L, Kilmartin JV, Shibata S, Iuchi I, Miyaji T, Hamilton HB (1971) Hemoglobin Hiroshima and the mechanism of the alkaline Bohr effect. Nature New Biol 232: 147–149

    PubMed  CAS  Google Scholar 

  • Perutz MF, Bauer C, Gros G, Leclerq F, Vandecasserie C, Schnek AG, Braunitzer G, Friday AD, Joysey KA (1981) Allosteric regulation of crocodilian hemoglobin. Nature (London) 291: 682–684

    CAS  Google Scholar 

  • Perutz MF, Fermi G, Luisi B, Shaanan B, Liddington RC (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Acc Chem Res 20: 309–321

    CAS  Google Scholar 

  • Petruzzelli R, Barra D, Goffredo BA, Bossa F, Colletta M, Brunori M (1984) Amino- acid sequence of β chain of hemoglobin IV from trout (Salmo irideus). Biochem Biophys Acta 789: 69–73

    CAS  Google Scholar 

  • Petruzzelli R, Goffredo BM, Barra D, Bossa F, Boffi A, Verzili D, Ascoli D, Chiancone E (1985) Amino acid sequence of the cooperative homodimeric hemoglobin from the mollusc Scapharca inaequivalvis and topology of the intersubunit contacts. FEBS Lett 184: 328–332

    PubMed  CAS  Google Scholar 

  • Petruzzelli R, Boffi A, Barra D, Bossa F, Ascoli F, Chiancone E (1989) Scapharca hemoglobins, type cases of the novel mode of chain assembly and heme-heme communication: amino acid sequence and subunit interactions of the tetrameric component. FEBS Lett 259: 133–136

    PubMed  CAS  Google Scholar 

  • Phillips SEV (1980) Structure and refinement of oxymyoglobin at 1.6 Å resolution. J Mol Biol 142: 531–554

    PubMed  CAS  Google Scholar 

  • Read KRH (1966) Molluscan hemoglobin and myoglobin. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca vol 2. Academic Press, New York, pp 209–232

    Google Scholar 

  • Riggs AF (1988) The Bohr effect. Annu Rev Physiol 50: 181–204

    PubMed  CAS  Google Scholar 

  • Riggs CK, Riggs AF (1990) cDNA-derived amino acid sequences of single and two- domain globins from the clam Barbatia reeveana. In: Preaux G, Lontie R (eds) Invertebrate di-oxygen carriers. Leuven University Press, Leuven, pp 57–60

    Google Scholar 

  • Roberts MS, Terwilliger RC, Terwilliger NB (1984) Comparison of sea cucumber hemoglobin structures. Comp Biochem Physiol 77B: 237–243

    CAS  Google Scholar 

  • Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull (Mar Biol Lab, Woods Hole) 61: 427–456

    CAS  Google Scholar 

  • Royer WE Jr, Love WE (1986) The low resolution structures of the cooperative hemoglobins from the blood clam Scapharca inaequivalvis. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, Heidelberg, New York, pp 111–115

    Google Scholar 

  • Royer WE Jr, Love WE, Fenderson FF (1985) Cooperative dimeric and tetrameric clam hemoglobins are novel assemblages of myoglobin folds. Nature (London) 316: 277–280

    CAS  Google Scholar 

  • Royer WE Jr, Hendrickson WA, Chiancone E (1989) The 2.4 Å crystal structure of Scapharca dimeric hemoglobin: cooperativity based on directly communicating hemes at a novel subunit interface. J Biol Chem 264: 21052–21061

    PubMed  CAS  Google Scholar 

  • Royer WE Jr, Hendrickson WA, Chiancone E (1990) Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science 249: 518–521

    PubMed  CAS  Google Scholar 

  • Rumen NK, Love WE (1963) The six hemoglobins of the sea lamprey (Petromyzon marinus). Arch Biochem Biophys 103: 24–35

    PubMed  CAS  Google Scholar 

  • Rund JT (1954) Vertebrates without erythrocytes and blood pigment. Nature (London) 173: 848–850

    Google Scholar 

  • Russu IM, Ho NT, Ho C (1980) Role of the ßl46 histidyl residue in the alkaline Bohr effect of hemoglobin. Biochemistry 19: 1043–1052

    PubMed  CAS  Google Scholar 

  • San George RC, Nagel RL (1985) Dimeric hemoglobins from the arcid blood clam, Noetia ponderosa: structure and functional properties. J Biol Chem 260: 4331–4337

    Google Scholar 

  • Schreiber JK, Parkhurst LJ (1984) Ligand binding equilibrium and kinetic measurements on the dimeric myoglobin of Busycon canaliculatum and the comparative ligand binding of diverse non-cooperative heme proteins. Comp Biochem Physiol 78A: 129–135

    CAS  Google Scholar 

  • Schroeder WA, Shelton JR, Shelton JB, Cormick J, Jones RT (1963) The amino acid sequence of the γ chain of human fetal hemoglobin. Biochemistry 2: 992–1008

    PubMed  CAS  Google Scholar 

  • Shaanan B (1983) Structure of human oxyhemoglobins at 2.1 Å resolution. J Mol Biol 171: 31–59

    PubMed  CAS  Google Scholar 

  • Smith FR, Ackers GK (1985) Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin. Proc Natl Acad Sci USA 82: 5347–5351

    PubMed  CAS  Google Scholar 

  • Smith SE, Brittain T, Wells RMG (1988) A kinetic and equilibrium study of ligand binding to the monomeric and dimeric heme-containing globins of two chitons. Biochem J 252: 673–678

    PubMed  CAS  Google Scholar 

  • Steigemann W, Weber E (1979) Structure of erythrocruorin in different ligand states refined at 1.4 Å resolution. J Mol Biol 127: 309–338

    PubMed  CAS  Google Scholar 

  • Steinmeier RC, Parkhust LJ (1979) Oxygen and carbon monoxide equilibria and the kinetics of oxygen binding by the cooperative dimeric hemoglobin of Thyonella gemmata. Biochemistry 18: 4645–4651

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takagi T, Ohta S (1989a) Primary structure of a dimeric hemoglobin from the deep-sea cold-seep clam Calyptogena soyoae. Biochem J 260: 177–182

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takagi T, Ohta S (1989b) Amino acid sequence of the dimeric hemoglobin (HbI) from the deep-sea cold-seep clam Calyptogena soyoae and the phylogenetic relationship with other molluscan globins. Biochim Biophys Acta 993: 254–259

    Google Scholar 

  • Svedberg T (1933) Sedimentation constants, molecular weights, and isoelectric points of the respiratory proteins. J Biol Chem 103: 311–325

    Google Scholar 

  • Takagi T, Tobita M, Shikama K (1983) Amino acid sequence of dimeric myoglobin from Cerithidea rhizophorarum. Biochim Biophys Acta 745: 32–36

    PubMed  CAS  Google Scholar 

  • Tam L-T, Riggs AF (1984) Oxygen binding and aggregation of bullfrog hemoglobin. J Biol Chem 259: 2610–2616

    PubMed  CAS  Google Scholar 

  • Tam L-T, Gray GP, Riggs AF (1986) The hemoglobins of the bullfrog Rana catesbeiana: the structure of the ß chain of component C and the role of the a chain in the formation of intermolecular disulfide bonds. J Biol Chem 261: 8290–8294

    PubMed  CAS  Google Scholar 

  • Terwilliger RC (1975) Oxygen equilibrium and subunit aggregation of a holothurian hemoglobin. Biochim Biophys Acta 386: 62–68

    PubMed  CAS  Google Scholar 

  • Terwilliger RC (1980) Structures of invertebrate hemoglobins. Am Zool 20: 53–67

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB (1985) Molluscan hemoglobins. Comp Biochem Physiol 81B: 255–261

    CAS  Google Scholar 

  • Terwilliger RC, Garlick RL, Terwilliger NB (1976) Hemoglobins of Glycera robusta: structures of coelomic cell hemoglobin and body wall myoglobin. Comp Biochem Physiol 54B: 149–153

    Google Scholar 

  • Terwilliger RC, Garlick RL, Terwilliger NB (1980) Characterization of the hemoglobins of Travisia foetida. Comp Biochem Physiol 66B: 261–266

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB, Arp A (1983) Thermal vent clam (Calyptogena magnifica) hemoglobin. Science 219: 981–983

    PubMed  CAS  Google Scholar 

  • Van Beek GGM, De Bruin SH (1980) Identification of the residues involved in the oxygen-linked chloride-ion binding sites in human deoxyhemoglobin and oxyhemoglobin. Eur J Biochem 105: 353–360

    PubMed  Google Scholar 

  • Vandergon TL, Colacino JM (1989) Characterization of hemoglobin from Phoronis architecta (Phoronida). Comp Biochem Physiol 94B: 31–39

    CAS  Google Scholar 

  • Vinson CR, Bonaventura J (1987) Structure and oxygen equilibrium of the three coelomic cell hemoglobins of the echiurian worm Thalassema mellita (Conn). Comp Biochem Physiol 87B: 361–366

    CAS  Google Scholar 

  • Wajcman H, Kilmartin JV, Najman A, Labie D (1975) Hemoglobin Cochin-Port-Royal: consequences of the replacement of the β chain c-terminal by an arginine. Biochim Biophys Acta 400: 354–364

    PubMed  CAS  Google Scholar 

  • Weber RE (1973) Functional and molecular properties of corpuscular hemoglobin from the bloodworm Glycera gigantea. Neth J Sea Res 7: 316–327

    CAS  Google Scholar 

  • Weber RE, Heidemann W (1977) The coelomic hemoglobin of the bloodworm Glycera rouxii: molecular and oxygenation properties. Comp Biochem Physiol 57A: 151–155

    Google Scholar 

  • Weber RE, Sullivan B, Bonaventura J, Bonaventura C (1977a) The hemoglobin systems of the bloodworms Glycera dibranchiata and G americana: oxygen binding properties of hemolysates and component hemoglobins. Comp Biochem Physiol 58B: 183–187

    Google Scholar 

  • Weber RE, Mangum C, Steinman H, Bonaventura C, Sullivan B, Bonaventura J (1977b) Hemoglobins of two terebellid polychaetes: Enoplobranchus sangueneus and Amphitrite ornata. Comp Biochem Physiol 56A: 179–187

    Google Scholar 

  • Weber RE, Wells RMG, Rossetti JE (1983) Allosteric interactions governing oxygen equilibria in the hemoglobin system of the spiny dogfish, Squalus acanthias. J Exp Biol 103: 109–120

    PubMed  CAS  Google Scholar 

  • Weber RE, Jensen FB (1988) Functional adaptations in hemoglobins from ectothermic vertebrates. Annu Rev Physiol 50: 161–178

    PubMed  CAS  Google Scholar 

  • Weber RE, Kleinschmidt T, Abbassi A, Wells RMG, Braunitzer G (1989) Allosteric transition in hemoglobin from the rhynchocephalian reptile relict Sphenodon punctatus. Hemoglobin 13: 625–636

    PubMed  CAS  Google Scholar 

  • Wells RMG, Tetens V, Brittain T (1983) Absence of cooperative hemoglobin-oxygen binding in Sphenodon, a reptilian relict from the Triassic. Nature (London) 306: 500–502

    CAS  Google Scholar 

  • Wood SC, Johansen K, Weber RE (1972) Hemoglobin of the coelacanth. Nature (London) 239: 283–285

    CAS  Google Scholar 

  • Wood WB, Wilson JH, Benbow RM, Hood LE (1981) Biochemistry: a problems approach. Benjamin/Cummings Menlo Park, pp 60–66

    Google Scholar 

  • Wyman J (1979) Variations on a theme: A comparative study of fish hemoglobins. Comp Biochem Physiol 62A: 9–12

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Royer, W.E. (1992). Structures of Red Blood Cell Hemoglobins. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics