Skip to main content

Respiratory Functions of Avian and Mammalian Hemoglobins

  • Chapter
Blood and Tissue Oxygen Carriers

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

In birds and mammals hemoglobin (Hb) plays a central role in the delivery of the oxygen that drives aerobic metabolism and in the removal of the carbon dioxide and the hydrogen ions that would otherwise disrupt aerobic metabolism. In large measure, Hb is important because it reversibly binds O2. One important feature of O2 binding is an increased blood-O2 capacity; essentially all of the O2 supplied to tissues in birds and mammals is carried as HbO2. A second important feature of O2 binding is the affinity of Hb for O2 which insures O2 loading in lungs and sets the pressures for O2 release in tissues. A third important feature of O2 binding is cooperativity. O2 binding shows positive cooperativity, linkage of O2 to deoxy Hb increases the affinity of Hb for subsequent O2. Finally, in addition to O2, Hb reversibly binds CO2 and H+ and in so doing transports a significant portion of these metabolic products from their sites of production to lungs and other sites of turnover in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adair GS (1925) The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J Biol Chem 63: 529–545

    CAS  Google Scholar 

  • Aggio MC, Montano MJ, Bruzzo MT, Guisto N (1972) Possible inefficacy of polycythemia in tolerance to high altitude. Acta Physiol Lat Am 22: 123–128

    PubMed  CAS  Google Scholar 

  • Aleksiuk M, Frohlinger A (1971) Seasonal metabolic organization in the muskrat. Can J Zool 49: 1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Altman PL, Dittmer DS (1971) Respiration and circulation. Bethesda, MD, Federation of American Societies for Experimental Biology, pp 182–186

    Google Scholar 

  • Baldwin JM, Chothia C (1979) Hemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol 129: 175–220

    Article  PubMed  CAS  Google Scholar 

  • Banchero N, Grover RT, Will JA (1971) Oxygen transport in the llama (Lama glama). Respir Physiol 13: 102–115

    Article  PubMed  CAS  Google Scholar 

  • Barcroft J, Binger CA, Bock AV, Doggart JH, Forbes, HS, Harrop G, Meakins JC, Redfield AC (1923) Observations upon the effect of high altitude on the physiological processes of the human body carried out in the Peruvian Andes chiefly at Cerro de Pasco. Philos Trans R Soc Lond Ser B 211: 351–480

    Article  Google Scholar 

  • Bartels H (1970) Prenatal Respiration. North-Holland, Amsterdam

    Google Scholar 

  • Bartels H, Hilpert P, Barbey K, Betke K, Riegel K, Lang EM, Metcalfe J (1963) Respiratory functions of blood of the yak, llama, camel, Dybowski deer, and African elephant. Am J Physiol 205: 331–336

    PubMed  CAS  Google Scholar 

  • Bartels H, Bartels R, Baumann R, Fons, R, Jurgens K-D, Wright P (1979) Blood oxygen transport and organ weights of two shrew species (S. etruscus and C. russula). Am J Physiol 236: R221–R224

    PubMed  CAS  Google Scholar 

  • Bartlett G (1976) Phosphate compounds in red cells of reptiles, amphibians and fish. Comp Biochem Physiol 55A: 211–214

    Article  Google Scholar 

  • Bauer C, Ludwig, I, Ludwig M (1968) Different effects of 2,3-diphosphoglycerate and adenosine triphophate on the oxygen affinity of adult and foetal haemoglobin. Life Sci 7: 1339–1343

    Article  CAS  Google Scholar 

  • Bauer C, Tamm R, Pétschow D, Bartels R, Bartels H (1975) Oxygen affinity and allosteric effects of embryonic mouse haemoglobins. Nature (London) 257: 333–334

    Article  CAS  Google Scholar 

  • Bauer C, Rollema HS, Till HW, Braunitzer G (1980) Phosphate binding by llama and camel hemoglobin. J Comp Physiol 136: 67–70

    CAS  Google Scholar 

  • Baumann R, Bauer C, Haller EA (1975) Oxygen-linked CO2 transport in sheep blood. Am J Physiol 229: 334–339

    CAS  Google Scholar 

  • Baumann R, Bartels H, Bauer C (1987) Blood oxygen transport. In: The handbook of physiology; respiratory system IV. Am Physiol Soc, Wash, pp 147–172

    Google Scholar 

  • Benesch R, Benesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of human hemoglobin. Biochem Biophys Res Commun 26: 162–167

    Article  PubMed  CAS  Google Scholar 

  • Black CP, Snyder G (1980) Oxygen transport in the avian egg at high altitude. Am Zool 20: 461–468

    Google Scholar 

  • Black CP, Tenney SM (1980) Oxygen transport during progressive hypoxia in high altitude and sea level waterfowl. Respir Physiol 39: 217–239

    Article  PubMed  CAS  Google Scholar 

  • Bohr C (1903) Theoretische Behandlung der quantitativen Verhaeltnisse bei der Sauerstoffaufnahme des Hämoglobins. Zentralbl Physiol 17: 682–691

    Google Scholar 

  • Bohr C, Hasselbalch K, Krogh A (1904) Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensaeurespannung des Blutes auf dessen Sauerstoffspannung ausuebt. Scand Arch Physiol 16: 402–412

    Google Scholar 

  • Bullard RW (1972) Vertebrates at altitudes. In: Yousef MY, Horvath SM, Bullard RW (eds) Physiological adaptations desert and mountain. Academic Press, New York, pp 209–225

    Google Scholar 

  • Bunn HF, Briehl RW (1970) The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J Clin Invest 49: 1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Chanutin A, Curnish RR (1967) Effect of organic and inorganic phosphate on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys 121: 96–102

    Article  PubMed  CAS  Google Scholar 

  • DeBruin SH, Janssen LHM (1973) The interaction of 2,3-diphosphoglycerate with human hemoglobin. Effects on the alkaline and acid Bohr effect. J Biol Chem 248: 2774– 2777

    CAS  Google Scholar 

  • Dejours P (1975) Principles of comparative respiratory physiology. North-Holland, Amsterdam

    Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1948) Exercise-induced arterial hypoxemia in healthy human sugjects at sea level. J Physiol 355: 161–175

    Google Scholar 

  • Eaton JW, Dkelton TD, Berger E (1974) Survival at extreme altitude: protective effect of increased hemoglobin-oxygen affinity. Science 183: 743–744

    Article  PubMed  CAS  Google Scholar 

  • Erslev A (1981) Erythroid adaptation to altitude. Blood Cells 7: 495–508

    PubMed  CAS  Google Scholar 

  • Goodman M, Moore GW, Matsuda G (1975) Darwinian evolution in the genealogy of haemoglobin. Nature (London) 253: 603–608

    Article  CAS  Google Scholar 

  • Guyton AC, Jones CE, Coleman TG (1973) Cardiac output and its regulation, 2nd edn, Saunders, Philadelphia

    Google Scholar 

  • Hall FG (1966) Minimal utilization of oxygen and oxygen curve of blood of rodents. J Appl Physiol 21: 375–378

    PubMed  CAS  Google Scholar 

  • Hall FG, Dill DB, Guzman-Barron ES (1936) Comparative physiology in high altitudes. J Cell Comp Physiol 8: 301–313

    Article  CAS  Google Scholar 

  • Hebbel RP, Eaton JW, Kronenberg RS, Zanjani ED, Moore LG, Berger EM (1978) Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest 62: 593–600

    Article  PubMed  CAS  Google Scholar 

  • Hedrick MS, Duffield DA, Cornell LH (1986) Blood viscosity and optimal hematocrit in a deep-diving mammal, the northern elephant seal (Mirounga angustirostris). Can J Zool 64: 2081–2085

    Article  Google Scholar 

  • Hill AV (1910) The possible effects of aggregation of the molecules of haemoglobin on its dissociation curve. J Physiol 40: iv–vii

    Google Scholar 

  • Holland RAB (1989) Special adaptations in haemoglobin of a developing marsupial, the Tammar Wallaby Macropus eugenii. Proc Soc Aust Physiol Pharm Soc 20: 66–73

    Google Scholar 

  • Hurtado A (1964) Animals in high altitudes: resident man. In: Dill DB (ed) Handbook of physiology. Am Physiol Soc, Wash, pp 843–860

    Google Scholar 

  • Isaacks RE, Harkness DR (1980) Erythrocyte organic phosphates and hemoglobin function in birds, reptiles and fishes. Am Zool 20: 115–129

    CAS  Google Scholar 

  • Jalonen J (1981) Oxygen transportation in blood. Ann Clin Res 13: 39–43

    PubMed  Google Scholar 

  • Jelkman W, Bauer C (1978) Embryonic hemoglobins: dependency of functional characteristics on tetramer composition. Pfiuegers Arch Eur J Physiol 377: 75–80

    Article  Google Scholar 

  • Jurgens KD, Pietschmann M, Yamaguchi K, Kleinschmidt T (1988) Oxygen binding properties, capillary densities and heart weights in high altitude camelids. J Comp Physiol B 158: 469–477

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt T, Marz J, Jurgens KD, Braunitzer G (1986) The primary structure of two tylopoda hemoglobins with high oxygen affinity: vicuna (Lama vicugna) and alpaca (Lama pacos). Biol Chem Hoppe-Seyler 367: 153–160

    Article  PubMed  CAS  Google Scholar 

  • Kooyman GL, Castellini MA, Davis RW (1981) Physiology of diving in marine mammals. Annu Rev Physiol 43: 343–356

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S (1975) Blood oxygen affinity and alveolar ventilation in relation to body weight in mammals. Am J Physiol 229: 529–536

    PubMed  CAS  Google Scholar 

  • Landgren GL, Gillespie JR, Fedde MR, Jones BW, Pieschl RL, Wagner PD (1988) O2 transport in the horse during rest and exercise. In: Gonzalez NC, Fedde MR eds Oxygen transfer from atmosphere to tissues. Plenum, New York, pp 333–336

    Google Scholar 

  • Lenfant C (1969) Physiological properties of blood from marine mammals. In: Andersen HT (ed) The biology of marine mammals. Academic Press, New York, pp 95–116

    Google Scholar 

  • Lenfant C (1973) High altitude adaptation in mammals. Am Zool 13: 447–456

    Google Scholar 

  • Lenfant C, Torrance J, English E, Finch A, Reynafarje C, Ramos C, Faura J (1968a) Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J Clin Invest 47: 2652–2656

    Article  PubMed  CAS  Google Scholar 

  • Lenfant C, Kenney DW, Aucutt C (1968b) Respiratory function in the killer whale Orcinus orca (Linnaeus). Am J Physiol 215: 1506–1511

    PubMed  CAS  Google Scholar 

  • Liggens GC, Qvist J, Hochachka PW, Creasy RK, Schneider RC, Snider MT, Zapol WM (1980) Fetal cardiovascular and metabolic responses to simulated diving in the Weddell seal. J Appl Physiol 49: 424–430

    Google Scholar 

  • Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature (London) 228: 726–739

    Article  CAS  Google Scholar 

  • Petschow D, Wurdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C (1977) Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol 42: 139–143

    PubMed  CAS  Google Scholar 

  • Petschow R, Petschow D, Bartels R, Baumann R, Bartels H (1978) Regulation of high blood O2 affinity of fetal, newborn and adult mouse. Respir Physiol 35: 271–282

    Article  PubMed  CAS  Google Scholar 

  • Qvist J, Weber RE, Zapol WM (1981) Oxygen equilibrium properties of blood and hemoglobin of fetal and adult Weddell seals. J Appl Physiol 50: 999–1005

    PubMed  CAS  Google Scholar 

  • Riggs A (1976) Factors in the evolution of hemoglobin function. Fed Proc 35: 2115–2118

    PubMed  CAS  Google Scholar 

  • Rollema HS, Bauer C (1979) The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J Biol Chem 254: 12038–12043

    PubMed  CAS  Google Scholar 

  • Rollema HS, Weingarten J, Bauer C, Scheid P (1978) Interactions among H+, CO2, and inositol hexaphosphate in binding to chicken hemoglobin (Abstr). Pfluegers Arch Eur J Physiol 373: R44

    Google Scholar 

  • Rossi-Bernardi L, Roughton FJW (1967) The specific influence of carbon dioxide and carbamate compounds on the buffer power and Bohr effects in human haemoglobin solutions. J Physiol 189: 1–29

    PubMed  CAS  Google Scholar 

  • Samaja M, Veicsteinas A, Cerretelli P (1979) Oxygen affinity of blood in altitude Sherpas. J Appl Physiol 47: 337–341

    PubMed  CAS  Google Scholar 

  • Santolaya RB, Lahiri S, Alfaro RT, Schoene RB (1989) Respiratory adaptations in the highest inhabitants and highest Sherpa mountaineers. Respir Physiol 77: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Scott AF, Bunn HF, Brush AH (1977) The phylogenetic distribution of red cell 2,3- diphosphoglycerate and its interaction with mammalian hemoglobins. J Exp Zool 201: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Shapell SD, Lenfant C (1974) Physiological role of the oxyhemoglobin dissociation curve. In: Surgenor DM (ed) The red blood cell, 2nd edn. Academic Press, New York, pp 842–873

    Google Scholar 

  • Siggaard-Andersen O (1971) Oxygen-linked hydrogen binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. I. Studies on erythrolysate. Scand Clin Lab Invest 27: 351–360

    Article  CAS  Google Scholar 

  • Snyder GK (1971) Influence of temperature and hematocrit on blood viscosity. Am J Physiol 220: 1667–1672

    PubMed  CAS  Google Scholar 

  • Snyder GK (1973) Erythrocyte evolution: the significance of the Fahraeus-Lindqvist phenomenon. Respir Physiol 19: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Snyder GK (1983) Respiratory adaptations in diving mammals. Respir Physiol 54: 269–294

    Article  PubMed  CAS  Google Scholar 

  • Snyder GK, Binkley EL (1985) Oxygen transport, tissue glycogen stores, and tissue pyruvate kinase activity in muskrats. Can J Zool 63: 1440–1444

    Article  CAS  Google Scholar 

  • Snyder GK, Black CP, Birchard GF, Lucich R (1982a) Respiratory properties of blood from embryos of highland vs. lowland geese. J Appl Physiol 53: 1432–1438

    PubMed  CAS  Google Scholar 

  • Snyder GK, Black CP, Birchard GF (1982b) Development and metabolism during hypoxia in embryos of high altitude, Anser indicus, versus sea level, Branta canadensis, geese. Physiol Zool 55: 113–123

    Google Scholar 

  • Stone HO, Thompson HK, Schmidt-Nielsen K (1968) The influence of erythrocytes on blood viscosity. Am J Physiol 214: 913–918

    PubMed  CAS  Google Scholar 

  • Tazawa J (1980) Oxygen and CO2 exchange and acid-base regulation in the avian embryo. Am Zool 20: 395–404

    Google Scholar 

  • Tazawa J, Mochizuki M (1977) Oxygen analyses of chicken embryo blood. Respir Physiol 40: 393–398

    Google Scholar 

  • Thomson JM, Dempsey JA, Chosy LW, Shahidi NT, Reddan WG (1974) Oxygen transport and oxyhemoglobin dissociation during prolonged muscular work. J Appl Physiol 37: 658–664

    PubMed  CAS  Google Scholar 

  • Tuchinda S, Nagai K, Lehmann H (1975) Oxygen dissociation curve of haemoglobin Portland. FEBS Lett 49: 390–391

    Article  PubMed  CAS  Google Scholar 

  • Turek Z, Kreuzer F, Turek-Maischneider M, Ringnalda BEM (1978) Blood O 2 content, cardiac output, and flow to organs at several levels of oxygenation in rats with a left- shifted blood oxygen dissociation curve. Pfluegers Arch Eur J Physiol 376: 201–207

    Article  CAS  Google Scholar 

  • Wagner PD (1988) An integrated view of the determinants of maximum oxygen uptake. In: Gonzalez NC, Fedde MR (eds) Oxygen transfer from atmosphere to tissues. Plenum, New York, pp 245–256

    Google Scholar 

  • Wickham LL, Eisner R, White FC, Cornell LH (1989) Blood viscosity in phocid seals: possible adaptations to diving. J Comp Physiol 159: 153–158

    CAS  Google Scholar 

  • Winslow RM (1988) Red cell properties and optimal oxygen transport. In: Gonzalez NC, Fedde MR (eds) Oxygen transfer from atmosphere to tissues. Plenum, New York, pp 117–136

    Google Scholar 

  • Wood SC, Lenfant C (1987) Phylogeny of the gas-exchange system: red cell function. In: Handbook of physiology, the respiratory system IV. Am Physiol Soc, Wash, pp 131–146

    Google Scholar 

  • Wranne B, Woodson RD, Detter JC (1972) Bohr effect: interaction between H+, CO2, and 2,3-DPG in fresh and stored blood. J Appl Physiol 32: 749–754

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Snyder, G.K. (1992). Respiratory Functions of Avian and Mammalian Hemoglobins. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics