Skip to main content

Molluscan Hemocyanins: Structure and Function

  • Chapter
Blood and Tissue Oxygen Carriers

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

Hemocyanins are copper proteins that serve oxygen transport in two, and only two, phyla: Arthopoda and Mollusca. Although molluscan and arthropod hemocyanins share certain general features (for example, each has a binuclear copper site for oxygen binding) and exhibit much similarity in function, it is now becoming apparent that the structural differences between the hemocyanins from these two phyla are much more significant than their similarities. For example, size and arrangements of subunits are wholly different, and comparison of amino acid sequences indicates little homology except in one limited region. It is now generally held by workers in the field that the molluscan and arthropod hemocyanins are at best very distantly related, and probably arose in their separate phyla through independent evolutionary events (Mangum 1985; Drexel et al. 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adair GS, Elliott FG (1968) Measurements of very small osmotic pressure of the haemocyanin of Pila leopoldvillensis. Nature (London) 219: 81–82

    Article  CAS  Google Scholar 

  • Alben JO, Yen L, Farrier NJ (1970) Infrared studies of carbon monoxide bound to hemocyanin and simple copper complexes. J Am Chem Soc 92: 4475–4476

    Article  CAS  Google Scholar 

  • Bak HJ, Beintema JJ (1987) Panulirus interruptus hemocyanin: the elucidation of the complete amino acid sequence of subunit a. Eur J Biochem 169: 333–348

    Article  PubMed  CAS  Google Scholar 

  • Beltramini M, Ricchelli F, Piazzesi A, Barel A, Salvato B (1984) Removal of copper from Octopus vulgaris hemocyanin: preparation of the half-apo and apo derivatives. Biochem J 221: 911–914

    PubMed  CAS  Google Scholar 

  • Berger J, Pilz I, Witters R, Lontie R (1977a) Studies by small angle X-ray scattering of the quaternary structure of dissociation products of the β-hemocyanin of Helix pomatia. Eur J Biochem 73: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Berger J, Pilz I, Witters R, Lontie R (1977b) Studies by small angle X-ray scattering of the quaternary structure of the β-hemocyanin of Helix pomatia. Eur J Boichem 80: 79–82

    Article  CAS  Google Scholar 

  • Billiald P, Lamy J, Wichertjes T, van Bruggen E, Lone P, Gielens C, Preaux G (1990) Immunoelectron microscopy of the hemocyanins of Octopus dofleini and Octopus vulgaris. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 343–346

    Google Scholar 

  • Bonaventura J, Bonaventura C, Sullivan B (1977) Properties of the oxygen-binding domains isolated from subtilisin digests of six molluscan hemocyanins. In: Bannister J (ed) Structure and function of hemocyanin. Springer, Berlin Heidelberg New York, pp 204–216

    Google Scholar 

  • Bonaventura C, Bonaventura J, Miller KI, van Holde KE (1981) Hemocyanin of the chambered nautilus: structure-function relationships. Arch Biochem Biophys 211: 589– 598

    Article  PubMed  CAS  Google Scholar 

  • Brohult S (1947) Hemocyanins of the gastropods. J Phys Coll Chem 51: 206–217

    Article  CAS  Google Scholar 

  • Brouwer M, Ryan M, Bonaventura J, Bonaventura C (1978) Functions and structural properties of Murex fulvescens hemocyanin: isolation of two different subunits required for reassociation of a molluscan hemocyanin. Biochemistry 17: 2810–2815

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Powers L, Kincaid B, Larrabee JA, Spiro TG (1980) Structural studies of the hemocyanin active site. 1. Extended X-ray absorption fine structure (EXAFS) analysis. J Am Chem Soc 102: 4210–4216

    Article  CAS  Google Scholar 

  • Chaplin MF, Corfield GC, Wood EJ (1983) Origin and distribution of 3-O-methyl hexoses in gastropod hemocyanins. Comp Biochem Physiol 75B: 331–334

    CAS  Google Scholar 

  • Clarke MR (1986) Evolution of recent cephalopods: a brief review. In: Trueman ER, Clarke MR (eds) The Mollusca, vol 13. Academic Press, Orlando, pp 331–340

    Google Scholar 

  • Condie RM, Langer RB (1964) Linear polymerization of a gastropod hemocyanin. Science 144: 1138–1140

    Article  PubMed  CAS  Google Scholar 

  • Connelly PR, Gill SJ, Miller KI, Zhou G, van Holde KE (1989) Identical linkage and cooperativity of oxygen and carbon monoxide binding to Octopus dofleini hemocyanin. Biochemistry 28: 1835–1843

    Article  PubMed  CAS  Google Scholar 

  • Cox JA, Elliott FG (1974) Isotopic copper exchange in Pila hemocyanin with three radioactive cuprous complexes. Biochim Biophys Acta 371: 392–401

    PubMed  CAS  Google Scholar 

  • Cuff ME, Hendrickson WA, Lamy J, Lamy JN, Miller KI, van Holde KE (1990) Crystals of the carboxyl-terminal functional unit from Octopus dofleini hemocyanin. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 189–192

    Google Scholar 

  • Dawson A, Wood EJ (1982) Equilibrium and kinetic studies of oxygen binding to the hemocyanin from the freshwater snail Lymnea stagnalis. Biochem J 207: 145–153

    PubMed  CAS  Google Scholar 

  • Declercq L, Witters R, Preaux G (1990) Partial sequence determination of Sepia officinalis hemocyanin via cDNA. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 131–134

    Google Scholar 

  • DePhillips HA, Nickerson KW, Johnson M, van Holde KE (1969) Physical studies of hemocyanins IV. Oxygen-linked dissociation of Loligo pealei hemocyanin. Biochemistry 8: 3665–3672

    Article  PubMed  Google Scholar 

  • DiCera F (1990) Statistical thermodynamics of ligand binding to giant macromolecules. II Nuovo Cimento 120: 61–67

    Article  Google Scholar 

  • Dijk M, Brouwer M, Court A, Gruber M (1970) Structure and function of hemocyanin VII. The smallest subunit of a and ß hemocyanins of Helix pomatia: size, composition, N- and C-terminal amino acids. Biochim Biophys Acta 221: 467–479

    PubMed  CAS  Google Scholar 

  • Drexel R, Schneider H-J, Sigmund S, Linzen B, Gielens C, Lontie R, Preaux G, Lottspatch F, Henschen A (1986) Partial primary structure of the Helix pomatia βc-hemocyanin functional unit d. In: Linzen B (ed) Invertebrate oxygen carriers. Springer Berlin Heidelberg New York, pp 255–258

    Google Scholar 

  • Drexel R, Siegmund S, Schneider HJ, Linzen B, Gielens C, Preaux G, Kellerman J, Lottspeich F (1987) Complete amino acid acid sequence of a functional unit from molluscan hemocyanin (Helix pomatia). Biol Chem Hoppe-Seyler 368: 617–635

    Article  PubMed  CAS  Google Scholar 

  • Ellerton HD, Ellerton NF, Robinson H (1983) Hemocyanin, a current perspective. Prog Biophys Mol Biol 41: 143–248

    Article  PubMed  CAS  Google Scholar 

  • Elliott FG, van Baelen H (1965) Poids moleculaire et zone de stabilite de l’hemocyanine de Pila leopoldvillensis. Bull Soc Chim Biol 47: 1979–1986

    PubMed  CAS  Google Scholar 

  • Fager LY, Alben JO (1972) Structure of the carbon monoxide binding site of hemocyanin studied by Fourier-transform infra-red spectroscopy. Biochemistry 11: 4786–4792

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G, Printz MP (1959) Specific reactions of hydrogen peroxide with the active site of hemocyanin. The formation of “methemocyanin”. J Am Chem Soc 81: 6259– 6264

    Article  CAS  Google Scholar 

  • Freedman TB, Loehr JS, Loehr TM (1976) A resonance Raman study of the copper protein, hemocyanin. New evidence for the structure of the oxygen-binding site. J Am Chem Soc 98: 2809–2815

    Article  PubMed  CAS  Google Scholar 

  • Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HT, Beintema JJ (1984) 3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin. Nature (London) 309: 23–29

    Article  CAS  Google Scholar 

  • Ghiretti F (1956) The decomposition of hydrogen peroxide by hemocyanin and its dissociation products. Arch Biochem Biophys 63: 156–176

    Article  Google Scholar 

  • Ghiretti-Magaldi A, Salvato B, Tallandini L, Beltramini M (1979) The hemocyanin of Aplysia limacina. Comp Biochem Physiol 62A: 577–584

    Google Scholar 

  • Gielens C, Verschueren LJ, Preaux G, Lontie R (1981) Localization of the domains in the polypeptide chain of βc hemocyanin of Helix pomatia. In: Lamy J, Lamy J (eds) Invertebrate oxygen binding proteins. Marcel Dekker, New York, pp 109–116

    Google Scholar 

  • Gielens C, Bosman F, Preaux G, Lontie R (1983) Structural studies by limited proteolysis of the haemocyanin of Sepia officinalis. Life Chem Rep Suppl 1: 121–124

    CAS  Google Scholar 

  • Gielens C, Benoy C, Preaux G, Lontie R (1986) Presence of only seven functional units in the polypeptide chain of the haemocyanin of the cephalopod Octopus vulgaris. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 223–226

    Google Scholar 

  • Hall RL, Wood EJ (1976) The carbohydrate content of gastropod hemocyanins. Biochem Soc Trans 4: 307–309

    PubMed  CAS  Google Scholar 

  • Hall RL, Wood EJ, Kamerling JP, Gerwig G, Vliegenthart FG (1977) 3-O-Methyl sugars as constituents of glycoproteins. Identification of 3-O-methyl galactose and 3-O-methyl mannose in pulmonate gastropod hemocyanins. Biochem J 165: 173–176

    PubMed  CAS  Google Scholar 

  • Hamilton MG, Herskovits TT, Furcinitti PS, Wall JS (1989) Scanning transmission electron microscopic study of molluscan hemocyanin: comparison with light scattering molecular weights. J Ultrastruct Mol Struct Res 102: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Hamilton MG, Rodriguez RR, Wall JS, Herskovits TT (1990) Investigation of the organization of gastropodan hemocyanins by light scattering, ultracentrifugation, and scanning transmission electron microscopy (STEM). In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 305–308

    Google Scholar 

  • Herskovits TT (1988) Recent aspects of the subunit organization and dissociation of hemocyanins. Comp Biochem Physiol 91B: 597–611

    CAS  Google Scholar 

  • Herskovits TT, Hamilton MG (1987a) Physical investigations of the hemocyanin of the chiton Cryptochiton stellerei (Middendorff) Comp Biochem Physiol 86B: 641–649

    CAS  Google Scholar 

  • Herskovits TT, Hamilton MG (1987b) Hemocyanin of the chiton Stenoplax conspicua (Dall) Comp Biochem Physiol 88B: 127–132

    CAS  Google Scholar 

  • Herskovits TT, Hamilton MG (1987c) Hydrophobic stabilization of the chiton hemocyanins. Effects of urea, Hofmeister salts and pH on their dissociation. Biochim Biophys Acta 915: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Herskovits TT, Hamilton MG (1987d) Stabilizing influence of calcium and magnesium ions on the decameric structure of the chiton hemocyanins. Arch Biochem Biophys 258: 607–614

    Article  PubMed  CAS  Google Scholar 

  • Herskovits TT, Hamilton MG (1990) The hemoglobin of the aquatic snail, Planorbella duryi (Wetherby). Comp Biochem Physiol 95B: 321–326

    CAS  Google Scholar 

  • Herskovits TT, Russell MW (1984) Light-scattering investigation of the subunit structure and dissociation of Helix pomatia hemocyanin. Effects of salts and ureas. Biochemistry 23: 2812–2819

    Article  PubMed  CAS  Google Scholar 

  • Herskovits TT, Villanueva GB (1986) Light-scattering investigation of the subunit structure and dissociation of octopoda hemocyanins. Biochemistry 25: 931–939

    Article  PubMed  CAS  Google Scholar 

  • Herskovits TT, Carberry SE, Villanueva GB (1985a) Subunit dissociation of Busycon canaliculatum hemocyanin. Biochim Biophys Acta 828: 278–289

    Article  PubMed  CAS  Google Scholar 

  • Herskovits TT, Mazzella LJ, Villanueva GB (1985b) Light-scattering investigation of the dissociaton behavior of Lunatia heros and Littorina littorea hemocyanins. Biochemistry 24: 3862–3870

    Article  PubMed  CAS  Google Scholar 

  • Herskovits TT, Hamilton MG, Mazzella LJ (1986) Hemocyanin of the chiton Acanthopleura granulata. Biochemistry 25: 3612–3619

    Article  PubMed  CAS  Google Scholar 

  • Herskovits TT, Blake PA, Hamilton MG (1988) Subunit dissociation and denaturation of Fasciolaria tulipa hemocyanin. Comp Biochem Physiol 90B: 869–874

    CAS  Google Scholar 

  • Herskovits TT, Guzman AE, Hamilton MG (1989a) The hemocyanin of the whelk, Busycon contrarium (Conrad)-Aggregation states and subunit structure. Comp Biochem Physiol 92B: 181–187

    CAS  Google Scholar 

  • Herskovits TT, Blake PA, Gonzales JA, Hamilton MG, Wall JS (1989b) Subunit structure and higher order assembly of the hemocyanins of melongenidae family: Melongena corona (Gmelin), Busycon canaliculatum (Linné), B. carica (Gmelin), B. contrarium (Conrad), and B. spiratum (Lamark). Comp Biochem Physiol 94B: 415–421

    CAS  Google Scholar 

  • Herskovits TT, Cousins CJ, Hamilton MJ, Wall JS (1990a) The dissociation of Yoldia limatula hemocyanin: the influence of pH, urea, and salts. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 309–314

    Google Scholar 

  • Herskovits TT, Hamilton MG, Cousins CJ, Wall JS (1990b) Light scattering and scanning transmission electron microscopic investigation of the hemocyanin of the bivalve Yoldia limatula (Say). Comp Biochem Physiol 96B: 497–504

    CAS  Google Scholar 

  • Himmelwright RS, Eickman NC, Solomon El (1978a) Spectroscopic studies of ligand pertubation effects on the half-oxidized active site of Busycon canaliculatum hemocyanin. Biochem Biophys Res Commun 81: 237–242

    Article  PubMed  CAS  Google Scholar 

  • Himmelwright RS, Eickman NC, Solomon El (1978b) Preparation and characterization of met-apo hemocyanin: a single copper II active site. Biochem Biophys Res Commun 81: 243–247

    Article  PubMed  CAS  Google Scholar 

  • Himmelwright RS, Eickman NC, Solomon EI (1979) Reactions and interconversion of met and dimer hemocyanin. Biochem Biophys Res Commun 86: 628–634

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Lerch K (1985) Primary structure of tyrosinase from Streptomyces glaucescens. Biochemistry 24: 6038–6044

    Article  PubMed  CAS  Google Scholar 

  • Ilan E, Avissar I, Banin D, Daniel E (1986) Subunit structure of the hemocyanin from the gastropod, Levantina hierosolima. Biochemistry 25: 4994–4999

    Article  CAS  Google Scholar 

  • Jacobson RR, Tyeklar Z, Farooq A, Karlin KD, Liu S, Zubieta J (1988) A Cu2-O2 complex crystal structure and characterization of a reversible dioxygen binding system. J Am Chem Soc 110: 3690–3692

    Article  CAS  Google Scholar 

  • Karlin KD, Gultneh Y (1987) Binding and oxidation of molecular oxygen by copper complexes. Prog Inorg Chem 35: 219–327

    Article  CAS  Google Scholar 

  • Kitajima N, Koda T, Kitagawa T, Moro-oka Y (1988) An accurate synthetic model of oxyhemocyanin. J Chem Soc Chem Commun 1988: 151–152

    Article  Google Scholar 

  • Kitajima N, Fujisawa K, Moro-oka Y (1989) μ-η22 Peroxobinuclear copper complex, [Cu(HB(3,5-jPr2px)3]2(O2). J Am Chem Soc 111: 8975–8976

    Article  CAS  Google Scholar 

  • Klarman A, Shaklai N, Daniel E (1975) Oxygen binding to hemocyanin from Levantina hierosolima. Biochemistry 14: 102–104

    Article  PubMed  CAS  Google Scholar 

  • Klotz IM, Klotz TA (1955) Oxygen carrying proteins: a comparison of the oxygenation reaction in hemocyanin and hemerythrin with that in hemoglobin. Science 121: 477– 480

    Article  PubMed  CAS  Google Scholar 

  • Konings WN, Siezen RJ, Gruber JM (1969) Structure and properties of hemocyanins XI. Association-dissociation behavior of Helix pomatia hemocyanin. Biochim Biophys Acta 194: 367–385

    Google Scholar 

  • Kwon BS, Haq AK, Pomerantz SH, Halaban R (1987) Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci USA 84: 7473–7477

    Article  PubMed  CAS  Google Scholar 

  • Kwon BS, Wakulchik M, Haq AK, Halaban R, Kestler D (1988) Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression. Biochem Biophys Res Commun 153: 1301–1309

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Lamy JN, Leclerc M, Compin S, Miller KI, van Holde KE (1986) Preliminary results on the structure of Octopus dofleini hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 231–234

    Google Scholar 

  • Lamy J, Leclerc M, Sizaret P-Y, Lamy JN, Miller KI, McParland R, van Holde KE (1987) Octopus dofleini hemocyanin: structure of the seven domain polypeptide chain. Biochemistry 26: 3509–3518

    Article  CAS  Google Scholar 

  • Lang WH (1988) cDNA cloning of the Octopus dofleini hemocyanin: sequence of the carboxyl terminal domain. Biochemistry 27: 7276–7282

    Article  PubMed  CAS  Google Scholar 

  • Lang WH, van Holde KE (1990) cDNA cloning and sequencing of Octopus dofleini hemocyanin. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 135–140

    Google Scholar 

  • Lerch K (1982) Primary structure of tyrosinase from Neurospora crassa. J Biol Chem 257: 6414–6419

    PubMed  CAS  Google Scholar 

  • Lerch K, German UA (1988) Evolutionary relationships among copper proteins containing coupled binuclear copper sites. In: Oxidases and related redox systems. Alan R Liss, New York, pp 331–348

    Google Scholar 

  • Lerch K, Huber M, Schneider HJ, Drexel R, Linzen B (1986) Different origins of metal binding sites in binuclear copper proteins, tyrosinase and hemocyanin. J Inorg Biochem 26: 213–217

    Article  CAS  Google Scholar 

  • Lips D, Gielens C, Preaux G, Lontie R (1981) Evidence for two types of polypeptide chains in the hemocyanin of Buccinum undatum. Arch Int Physiol Biochem 90: B128

    Google Scholar 

  • Loehr JS, Freedman TB, Loehr TM (1974) Oxygen binding to hemocyanin: a resonance Raman spectroscopic study. Biochem Biophys Res Commun 56: 510–515

    Article  PubMed  CAS  Google Scholar 

  • Lontie R (1958) The binding of copper in hemocyanin. Clin Chim Acta 3: 68–71

    Article  PubMed  CAS  Google Scholar 

  • Lontie R (1983) Components, functional units and active sites of Helix pomatia hemocyanin. Life Chem Rep Suppl 1: 109–121

    CAS  Google Scholar 

  • Lontie R, Deley M, Robberecht H, Witters R (1973) Isolation of small functional subunits of Helix pomatia hemocyanin after subtilisin treatment. Nature New Biol 242: 180–182

    PubMed  CAS  Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248: R505–R514

    PubMed  CAS  Google Scholar 

  • Mangum CP, Miller KI, Scott SL, van Holde KE, Morse MP (1987) Bivalve hemocyanins-structural, functional and phylogenetic relationships. Biol Bull 173: 205– 221

    Article  CAS  Google Scholar 

  • Miller KI (1985) Oxygen equilibria of Octopus dofleini hemocyanin. Biochemistry 24: 4582–4586

    Article  PubMed  CAS  Google Scholar 

  • Miller KI, van Holde KE (1982) The structure of Octopus dofleini hemocyanin. Comp Biochem Physiol 73B: 1013–1018

    CAS  Google Scholar 

  • Miller KI, van Holde KE, Toumadje A, Johnson WC Jr., Lamy J (1988) Structure and function of the carboxyl-terminal oxygen-binding domain from the subunit of Octopus dofleini hemocyanin. Biochemistry 27: 7282–7288

    Article  PubMed  CAS  Google Scholar 

  • Miller KI, Schabtach E, van Holde KE (1990) Arrangement of subunits and domains within the Octopus dofleini hemocyanin molecule. Proc Natl Acad Sci USA 87: 1496– 1500

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88–118

    Article  PubMed  CAS  Google Scholar 

  • Morse MP, Meyerhoff E, Otto JJ, Kuzirian AM (1986) Hemocyanin respiratory protein in bivalve mollusks. Science 231: 1302–1304

    Article  PubMed  CAS  Google Scholar 

  • Munakata M, Kitagawa S, Goto K (1982) Is the oxygen atom of carbon-monoxide coordinated to the copper of hemocyanin? J Inorg Biochem 16: 319–322

    Article  PubMed  CAS  Google Scholar 

  • Muzii E (1981) Intracellular polymerized hemocyanin in the branchial gland of a cephalopod. Cell Tissue Res 220: 435–438

    Article  PubMed  CAS  Google Scholar 

  • Nakashima H, Behrens PQ, Moore MD, Yokota E, Riggs AF (1986) Structure of hemocyanin II from the horseshoe crab Limulus polyphemus. J Biol Chem 261: 10526– 10533

    PubMed  CAS  Google Scholar 

  • Niederhoffer EC, Timmons JH, Martell AE (1984) Thermodynamics of oxygen binding in natural and synthetic dioxygen complexes. Chem Rev 84: 137–203

    Article  CAS  Google Scholar 

  • Pearson JS, Wood EJ (1974a) Oxygen binding properties of Colus gracilis hemocyanin and of its subunits. FEBS Lett 48: 246–249

    Article  PubMed  CAS  Google Scholar 

  • Pearson J, Wood E (1974b) Attempts to obtain small functional subunits of the haemocyanins from Buccinum undatum and Neptunea antigua. Biochem J 2: 333– 336

    CAS  Google Scholar 

  • Pilz I, Engelborghs Y, Witters R, Lontie R (1974) Studies by X-ray small angle scattering of the quaternary structure in solution of halves and tenths of Helix pomatia hemocyanin and of Sepia officinalis hemocyanin. Eur J Biochem 42: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Preaux G, Gielens C (1990) Comparison of the sensitivity of molluscan haemocyanins to limited proteolysis and of the location of the carbohydrate chains in the functional units. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 99–106

    Google Scholar 

  • Preaux G, Gielens C, Lontie R (1979) Immunological comparison of molluscan hemocyanins. In: Weser U (ed) Metalloproteins: molecular function and clinical aspects. Thieme, Stuttgart, p 73

    Google Scholar 

  • Quitter S, Watts LA, Crosby C, Roxby R (1978) Molecular weights of aggregation states of Busycon hemocyanin. J Biol Chem 253: 525–530

    PubMed  CAS  Google Scholar 

  • Runnegar B (1982) The cambrian explosion: animals or fossils? J Geol Soc Aust 29: 395–411

    Article  Google Scholar 

  • Runnegar B (1983) Molluscan phylogeny revisited. Mem Assoc Aust Paleontol 1: 121– 144

    Google Scholar 

  • Runnegar B, Pojeta J (1985) Origin and diversification of the mollusca. In: Trueman ER, Clarke MR (eds) The Mollusca, vol 10. Academic Press, Orlando, pp 1–57

    Google Scholar 

  • Ruth P, Schipp R, Klussendorf B (1988) Cytomorphology and copper content of the basal cell in the midgut gland of Nautilus (Cephalopoda, Tetrabranchia) - a contribution to the localization of hemocyanin synthesis. Zoomorphology 108: 1–11

    Article  Google Scholar 

  • Ryan M, Terwilliger NB, Terwilliger RC, Schabtach E (1985) Chiton hemocyanin structure. Comp Biochem Physiol 80B: 647–656

    CAS  Google Scholar 

  • Salvato B, Giacometti GM, Beltramini M, Zilio F, Giacometti G, Magliozzo RS, Peisach J (1989) The oxidation of Octopus vulgaris hemocyanin by nitrogen oxidation. Biochemistry 28: 680–684

    Article  PubMed  CAS  Google Scholar 

  • Schartau W, Eyerie F, Reisinger P, Geisert H, Storz H, Linzen B (1983) Hemocyanins in spiders, XIX. Complete amino acid sequence of subunit d from Eurypelma cali- fornicum hemocyanin and comparison to chain e. Biol Chem HS 364: 1383–1409

    CAS  Google Scholar 

  • Schmekel L, Weischner M (1973) Die Blutdruese der Doridoides (Gastropoda, Opisthobranchia) als ort moeglicher Haemocyanin-synthese. Z Morphol Oekol Tiere 76: 261–264

    Google Scholar 

  • Schneider HJ, Drexel R, Feldmaier G, Linzen B, Lottspeich F, Henschen A (1983) Biol Chem HS 364: 1357–1381

    CAS  Google Scholar 

  • Schoot-Uiterkamp AMG (1972) Monomer and magnetic dipole-coupled Cu2+ EPR signals in nitrosohaemocyanin. FEBS Lett 20: 93–96

    Article  CAS  Google Scholar 

  • Schoot-Uiterkamp AMJ, Mason H (1973) Magnetic dipole-dipole coupled Cu (II) pairs in nitric oxide-treated tyrosinase. A structural relationship between the active sites of tyrosinase and hemocyanin. Proc Natl Acad Sci USA 70: 993–996

    Article  CAS  Google Scholar 

  • Senozan NM, Landrum J, Bonaventura J, Bonaventura C (1981) Hemocyanin of the giant keyhole limpet Megathura crenulata. In: Lamy J, Lamy J (eds) Invertebrate oxygen- binding proteins. Marcel Dekker, New York, pp 703–717

    Google Scholar 

  • Senozan NM, Avinc A, Unver Z (1988) Hemocyanin levels in Octopus vulgaris and the cuttlefish Sepia officinalis from the Aegean sea. Comp Biochem Physiol 91A: 581–585

    Article  CAS  Google Scholar 

  • Seposki JJ (1978) A kinetic model of phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4: 223–251

    Google Scholar 

  • Shibahara S, Tomita Y, Sakahura T, Nager C, Chaudhuri B, Mueller R (1986) Cloning and expression of cDNA encoding mouse tyrosinase. Nucleic Acids Res 14: 2413–2427

    Article  PubMed  CAS  Google Scholar 

  • Solomon El (1981) Binuclear copper active site: hemocyanin, tyrosinase, and type 3 copper oxidases. In: Spiro TG (ed) Copper proteins, vol 3. Wiley, New York, pp 41–108

    Google Scholar 

  • Sorrell TN (1989) Synthetic models for binuclear copper proteins. Tetrahedron 45: 3–68

    Article  CAS  Google Scholar 

  • Sorrel TN, Jameson DL (1982) An explanation of the observed stoichiometry of carbon monoxide binding in hemocyanin. J Am Chem Soc 104: 2053–2054

    Article  Google Scholar 

  • Takagi T (1986) Amino acid sequence of the C-terminal domain of octopus (Paroctopus dofleini dofleini) hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 259–262

    Google Scholar 

  • Terwilliger NB, Terwilliger RC, Meyerhoff E, Morse MP (1988) Bivalve hemocyanins - a comparison with other molluscan hemocyanins. Comp Biochem Physiol 89B: 189–195

    CAS  Google Scholar 

  • Thamann TJ, Loehr JS, Loehr TM (1977) Resonance Raman study of oxyhemocyanin with unsymmetrically labelled oxygen. J Am Chem Soc 99: 4187–4189

    Article  PubMed  CAS  Google Scholar 

  • Top A, Gielens C, Witters R, Van Beumen J, Preaux G (1990) Partial amino acid sequence and location of the carbohydrate chain in functional unit f of Sepia officinalis. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 119–124

    Google Scholar 

  • Torensma R, Phillips JC (1983) Oxygen binding by Helix pomatia α-hemocyanin studied by X-ray-absorption spectroscopy. Biochem J 209: 373–377

    PubMed  CAS  Google Scholar 

  • Tyeklar Z, Karlin KD (1989) Copper-dioxygen chemistry: a bioinorganic challenge. Acc Chem Res 22: 241–248

    Article  CAS  Google Scholar 

  • Van Breeman JFL, Wichertjes T, Muller MFL, van Driel R, van Bruggen EFJ (1975) Tubular polymers derived from Helix pomatia ß-hemocyanin. Eur J Biochem 60: 129–135

    Article  Google Scholar 

  • Van Bruggen E, Schutter W, van Breemen J, Wichertjes T, Keegstra W (1981) Recent electron microscopy of various hemocyanins. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Marcel Dekker, New York, pp 405–414

    Google Scholar 

  • Vandamme AM, Degreef C, Preaux G, Lontie R (1987) Relative molecular mass of the messenger RNA for the hemocyanin subunit of Sepia officinalis. Arch Int Physiol Biochim 95: B100

    Google Scholar 

  • Van der Deen H, Hoving H (1977) Nitrite and nitric oxide treatment of Helix pomatia hemocyanin: single and double oxidation of the active site. Biochemistry 16: 3519– 3525

    Article  PubMed  Google Scholar 

  • van der Deen H, Hoving H (1979) An infra red study of carbon monoxide complexes of hemocyanin. Evidence for the structure of the CO-binding site from vibrational analysis. Biophys Chem 9: 169–179

    Article  PubMed  Google Scholar 

  • Vanhoegraden R, Gielens C, Preaux G (1987) The glycoprotein nature of hemocyanins of cephalopods. Arch Int Physiol Biochim 95: B151

    Google Scholar 

  • Vanhoegraden R, Gielens C, Preaux G (1988) Location of the carbohydrate in the functional unit d of the βc-hemocyanin of Helix pomatia. Arch Int Physiol Biochim 96: B64

    Google Scholar 

  • Vanhoegarden R, Gielens C, Preaux G (1990) Location of the carbohydrate chains in the functional unit g of the βc-hemocyanin of Helix pomatia. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 153–156

    Google Scholar 

  • van Holde KE, Cohen LB (1964) Physical studies of hemocyanins. I. Characterization and subunit structure of Loligo pealei hemocyanin. Biochemistry 13: 1803–1808

    Article  Google Scholar 

  • van Holde KE, Miller KI (1982) Haemocyanins. Q Rev Biophys 15: 1–129

    Article  PubMed  Google Scholar 

  • van Holde KE, Miller KI (1985) Association-dissociation equilibria of Octopus hemocyanin. Biochemistry 24: 4577–4582

    Article  PubMed  Google Scholar 

  • van Holde KE, Miller KI (1986) Kinetics and equilibria of Octopus hemocyanin association. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 245–246

    Google Scholar 

  • van Holde KE, Miller KI, Schabtach E, Libertini L (1991) Assembly of Octopus dofleini hemocyanin. A study of the kinetics by sedimentation, light scattering, and electron microscopy. J Mol Biol 217: 307–321

    Article  PubMed  Google Scholar 

  • van Kuik JA, Kamerling JP, Vliegenthart JFG (1990) Carbohydrate analysis of hemocyanins. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 157–163

    Google Scholar 

  • Van Kuik JA, Van Halbeek H, Kamerling JP, Vliegenthart JFG (1985) Primary structure of the low-molecular weight carbohydrate chains of Helix pomatia α-hemocyanin. J Biol Chem 260: 13984–13988

    PubMed  Google Scholar 

  • Van Kuik JA, Sijbesma RP, Kamerling JP, Vliegenthart JFG, Wood EJ (1986) Primary structure of a low molecular mass N-linked oligosaccharide from the hemocyanin of Lymnea stagnalis. Eur J Biochem 160: 621–625

    Article  PubMed  Google Scholar 

  • Van Kuik JA, Sijbesma RP, Kamerling JP, Vliegenthart JFG, Wood EJ (1987) Primary structure determination of seven novel N-linked carbohydrate chains derived from hemocyanin of Lymnea stagnalis. Eur J Biochem 169: 399–411

    Article  PubMed  Google Scholar 

  • Volbeda A, Hol WGJ (1989a) Psuedo 2-fold symmetry in the copper-binding domain of an arthropodan haemocyanin. J Mol Biol 206: 531–546

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Hol WGJ (1989b) Crystal structure of hexameric haemocyanin from Panulirus interruptus refined to 3.2 Å resolution. J Mol Biol 209: 249–279

    Article  PubMed  CAS  Google Scholar 

  • Wichertjes T, Gielens C, Schutter WG, Preaux G, Lontie R, van Bruggen EFJ (1986) The quaternary structure of Sepia officinalis hemocyanin. Biochim Biophys Acta 872: 183–194

    Article  CAS  Google Scholar 

  • Wilcox DE, Long JR, Solomon El (1984) EPR studies of the “EPR non-detectable” met derivatives of hemocyanin: pertubations and displacement of the endogenous bridge in the coupled binuclear copper active site. J Am Chem Soc 106: 2186–2194

    Article  CAS  Google Scholar 

  • Willott E, Wang X-Y, Wells MA (1989) cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acid-rich larval serum protein. J Biol Chem 264: 19052– 19059

    PubMed  CAS  Google Scholar 

  • Winkler ME, Lerch K, Solomon El (1981) Competitive inhibitor binding to the binuclear copper active site in tyrosinase. J Am Chem Soc 103: 7001–7003

    Article  CAS  Google Scholar 

  • Witters R, Lontie R (1975) The formation of Helix pomatia methemocyanin accelerated by azide and fluoride. FEBS Lett 60: 400–403

    Article  PubMed  CAS  Google Scholar 

  • Wood EJ (1973) Gastropod hemocyanins: dissociation of hemocyanins from Buccinum undatum, Neptunea antiqua and Colus gracilis in the region pH 7.5–9.2. Biochim Biophys Acta 328: 101–106

    PubMed  CAS  Google Scholar 

  • Wood EJ, Bannister WH, Oliver CJ, Lontie R, Witters R (1971) Diffusion coefficients, sedimentation coefficients and molecular weights of some gastropod hemocyanins. Comp Biochem Physiol 40B: 19–24

    Google Scholar 

  • Wood EJ, Chaplin MF, Gielens C, De Sadeleer J, Preaux G, Lontie R (1985) Relative molecular mass of the polypeptide chain of ßc-hemocyanin of Helix pomatia and carbohydrate composition of the functional units. Comp Biochem Physiol 82B: 179– 186

    CAS  Google Scholar 

  • Woolery GL, Powers L, Winkler M, Solomon El, Spiro TG (1984) EXAFS studies of binuclear copper site of oxy-, deoxy-, metaquo-, metfluoro-, and metazidohemocyanins from arthropods and molluscs. J Am Chem Soc 106: 86–92

    Article  CAS  Google Scholar 

  • Xin X-Q, Gielens C, Witters R, Preaux G (1990) Amino acid sequence of the functional unit g from βc-hemocyanin of Helix pomatia. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven University Press, Leuven, pp 113–118

    Google Scholar 

  • Yonge C (1941) The Protobranchiate Molluscs: A functional interpretation of their structural evolution. Philos Trans R Soc Lond 230B: 79–147

    Google Scholar 

  • Zhou G, Ho PS, van Holde KE (1988) An analytical solution to the Monod-Wyman- Changeux model and all parameters of this model. Biophys J 55: 275–280

    Article  Google Scholar 

  • Zolla L, Kuiper HA, Vecchini P, Antonini E, Brunori M (1978) Dissociation and oxygen binding behavior of β-hemocyanin from Helix pomatia. Eur J Biochem 87: 467–473

    Article  PubMed  CAS  Google Scholar 

  • Zolla L, Kuiper HA, Brunori M (1983) Effect of buffers on the functional properties of Helix pomatia β-hemocyanin. Biochim Biophys Acta 744: 200–204

    Article  CAS  Google Scholar 

  • Zolla L, Calabrese L, Brunori M (1984) Distribution of copper atoms and binding of carbon-monoxide in partially copper-depleted hemocyanin. Biochim Biophys Acta 788: 206–213

    Article  PubMed  CAS  Google Scholar 

  • Zolla L, Coletta M, DiCera E, Giardina B, Kuiper HA, Brunori M (1986) Discrimination of tertiary and quaternary Bohr effect in the O2 binding of Helix pomatia β- hemocyanin. Biophys Chem 24: 319–325

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Holde, K.E., Miller, K.I., Lang, W.H. (1992). Molluscan Hemocyanins: Structure and Function. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics