Skip to main content

Part of the book series: Physics and Chemistry in Space ((SPACE,volume 21))

Abstract

The existence of “plasma” clouds propagating from the sun to the earth was proposed as a cause of geomagnetic storms even before the existence of the solar wind was contemplated [6.49,15]. Such plasma clouds (now usually called ejecta or ejections) are routinely observed in the solar wind. As a consequence of the frozen-in property of magnetic fields in a fully ionized plasma, a beam of plasma from the sun carries along the solar magnetic field [6.2]. The idea of a plasma cloud and that of frozen-in magnetic fields were combined in the concept of a “magnetized plasma cloud” [6.54,55,26,17]. The magnetic field in a magnetized cloud might be either turbulent [6.54] or in the form of a smooth loop or tongue [6.17,26]. There is a question as to whether a Forbush decrease in cosmic ray intensity is caused by scattering from turbulent magnetic fields [6.54] or drifting in strong ordered magnetic fields [6.17]. In the original model of a tongue the magnetic field lines connect to the sun. It was later suggested that the magnetic field lines could disconnect from the sun by the process of magnetic reconnection [6.58]. Thus, thirty years ago, the concept of a magnetized plasma cloud was being considered, and the possibilities of turbulent clouds versus ordered clouds and connected clouds versus disconnected clouds were being debated. Figure 6.1 summarizes the early views of magnetic clouds and ejecta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akasofu, S.-L, B. Tsurutani, Unusual auroral features observed on January 10–11, 1983, and their possible relationships to the interplanetary magnetic field, Geophys. Res. Lett., 11, 1086, 1984.

    Article  ADS  Google Scholar 

  2. Alfven, H., Tellus, 6, 232, 1954.

    Article  ADS  Google Scholar 

  3. Badruddin, R., S. Yadov, N.R. Yadov, S.P. Agarawal, Influence of magnetic clouds on cosmic ray intensity variations, Proc. 19th ICRC, SH, 5.1–12, 1985.

    Google Scholar 

  4. Baker, D.N., S.-I. Akasofu, W. Baumjohann, J.W. Bieber, D.H. Fairfield, E.W. Hones, Jr., B. Mauk, R.L. McPherron, T.E. Moore, Substorms in the magnetosphere, in Solar Terrestrial Physics: Present and Future, ed. by D.M. Butler and K. Papadopoulos, NASA Reference Publication 1120, 1984.

    Google Scholar 

  5. Bame, S.J., J.R. Asbridge, W.C. Feldman, J.T. Gosling, R.D. Zwickl, Bidirectional streaming of solar wind electrons > 80 eV: ISEE evidence for a closed field structure within the driver gas of an interplanetary shock, Geophys. Res. Lett., 8, 173, 1981.

    Article  ADS  Google Scholar 

  6. Borrini, G., J.T. Gosling, S.J. Bame, W.C. Feldman, Analysis of shock wave disturbances observed at 1 AU from 1971 through 1978, J. Geophys. Res., 87, 4365, 1982.

    Google Scholar 

  7. Burlaga, L.F., Magnetic clouds: constant alpha force-free configurations, J. Geophys. Res., 93, 7217, 1988.

    Article  ADS  Google Scholar 

  8. Burlaga, L.F., K.W. Behannon, Magnetic clouds: Voyager observations between 2 and 4 AU, Solar Phys., 81, 181, 1982.

    Article  ADS  Google Scholar 

  9. Burlaga, L.F., J.H. King, Intense interplanetary magnetic fields observed by geocentric spacecraft during 1%3–1975, J. Geophys. Res., 84, 6684, 1981.

    Google Scholar 

  10. Burlaga, L.F., E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations, J. Geophys. Res., 86, 6673, 1981.

    Article  ADS  Google Scholar 

  11. Burlaga, L.F., L.W. Klein, N.R. Sheeley, Jr., D.J. Michels, R.A. Howard, M.J. Koomen, R. Schwenn, H. Rosenbauer, A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 9, 1317, 1982.

    Article  ADS  Google Scholar 

  12. Burlaga, L.F., F.B. McDonald, M.L. Goldstein, A.J. Lazarus, Cosmicray modulation and turbulent interaction regions near 11 AU, J. Geophys. Res., 90, 12, 127, 1985.

    Article  Google Scholar 

  13. Burlaga, L.F., K.W. Behannon, L.W. Klein, Compound streams, magnetic clouds and major magnetic storms, J. Geophys. Res., 92, 5727, 1987.

    Google Scholar 

  14. Burlaga, L.F., R.P. Lepping, J.A. Jones, Global configuration of a magnetic cloud, in Physics of Magnetic Flux Ropes, ed. by E.R. Priest, L.C. Lee and C.T. Russel, AGU Geophysical Monograph 58, 1990.

    Google Scholar 

  15. Chapman, S., V.C.A. Ferraro, Solar streams of corpuscles, their geometry, absorption of light and penetration. Monthly Notices Roy. Astron. Soc., 89, 470, 1929.

    ADS  MATH  Google Scholar 

  16. Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Ap. J., 453, 1989.

    Google Scholar 

  17. Cocconi, G., T. Gold, K. Greisen, S. Hayakawa, J.P. Morrison, The cosmic ray flare effect, Nuovo Cimento, 8, 161, 1958.

    Article  Google Scholar 

  18. Crooker, N.U., J.T. Gosling, E.J. Smith, C.T. Russell, A coronal mass ejection flux rope in the solar wind?, in Physics of Magnetic Flux Ropes, ed. by  E.R. Priest, L.C. Lee and C.T. Russell, to appear, 1989.

    Google Scholar 

  19. Dryer, M.S., T. Wu, G. Gislason, Some simulated characteristics of magnetic clouds, in Proceedings of the Sixth International Solar Wind Conference, ed. by V.J. Pizzo, T.E. Holzer and D.G. Sime, NCAR/TN-306+Proc, 735, 1987.

    Google Scholar 

  20. Dungey, J.R., Interplanetary magnetic field and auroral zones, Phys. Rev. Lett., 6, 47, 1961.

    Google Scholar 

  21. Fairfield, D.H., L.J. Cahill, Jr., Transition region magnetic field and polar magnetic disturbances, J. Geophys. Res., 71, 155, 1966.

    ADS  Google Scholar 

  22. Field, G., Magnetic helicity in astrophysics, in Magnetospheric Phenomena in Astrophysics, ed. by R.I. Epstein and W.C. Feldman, American Institute of Physics, New York, 1986.

    Google Scholar 

  23. Galvin, A.B., F.M. Ipavich, G. Gloeckler, D. Hovestadt, S.J. Bame, B. Klecker, M. Scholer, B. Tsurutani, Solar wind iron charge states preceding a driver plasma, J. Geophys. Res., 92, 12069, 1987.

    Article  Google Scholar 

  24. Geranios, A., Magnetically closed regions in the solar wind, Astrophys. Space Sei., 81, 103, 1982.

    Article  ADS  Google Scholar 

  25. Geranios, A., Statistical analysis of magnetically closed structures. Planetary Space Science, 35, 722, 1987.

    Article  ADS  Google Scholar 

  26. Gold, T., Magnetic storms. Space Science Rev., 1, 100, 1962.

    Article  ADS  Google Scholar 

  27. Goldstein, H., On the field configuration in magnetic clouds, in Solar Wind Five, NASA Conference Publ. 2280, p. 731, 1983.

    Google Scholar 

  28. Gosling, J.T., The magnetic topology of coronal mass ejections in interplanetary space, in Physics of Magnetic Flux Ropes, ed. by E.R. Priest, L.C. Lee and C.T. Russell, AGU Geophysical Monograph 58, 1990.

    Google Scholar 

  29. Gosling, J.T., E.C. Roelof, A comment on the detection of closed magnetic structures in the solar wind, Sol. Phys., 39, 405, 1974.

    Article  ADS  Google Scholar 

  30. Gosling, J.T., V. Pizzo, S.J. Bame, Anomalously low proton temperatures in the solar wind following interplanetary shock waves - Evidence for magnetic bottles?, J. Geophys. Res., 78, 2001, 1973.

    Google Scholar 

  31. Gosling, J.T., J.R. Asbridge, S.J. Bame, W.C. Feldman, R.D. Zwickl, Observations of large fluxes of He+ in the solar wind following an interplanetary shock, J. Geophys. Res., 85, 3431, 1980.

    Article  ADS  Google Scholar 

  32. Gosling, J.T., D.N. Baker, S.J. Bame, R.D. Zwickl, Bidirectional solar wind electron heat flux and hemispherically symmetric polar rain, J. Geophys. Res., 91, 352, 1986.

    Google Scholar 

  33. Gosling, J.T., D.N. Baker, S.J. Bame, W.C. Feldman, R. Zwickl, E.J. Smith, Bidirectional solar wind electron heat flux events, J. Geophys. Res., 92, 8519, 1988.

    Article  ADS  Google Scholar 

  34. Gosling, J.T., SJ. Bame, E.J. Smith, M.E. Burton, Forward-reverse shock pairs associated with transient disturbances in the solar wind at 1 AU, J. Geophys. Res., 93, 8741, 1988.

    Article  ADS  Google Scholar 

  35. Hundhausen, A J., The origin and propagation of coronal mass ejections, in Proc. of the Sixth International Solar Wind Conference, ed. by V J. Pizzo, T.E. Holzer and D.G. Sime, NCAR Technical Note, NCAR/TN 306+Proc, 181, 1988.

    Google Scholar 

  36. Illing, R.M.E., A J. Hundhausen, Observations of a coronal transient from 1.2 to 6 solar radii, J. Geophys. Res., 90, 275, 1985.

    Article  ADS  Google Scholar 

  37. Ipavich, F.M., R. J. Leppmg, Analysis of the October 31, 1972 interplanetary shock wave and associated imusual phenomena, in Proceedings of the 14th International Cosmic Ray Conference, Munich, Federal Republik of Germany, August 15–19, 1568, 1975.

    Google Scholar 

  38. lucci, N., M. Parisi, C. Signorini, M. Storini, G. Villorese, Anomalous short-term mcreases in the galactic cosmic ray intensity: Are they related to interplanetary magnetic cloud-like strucmres?, in Proc. of the 19th ICRC, SH 5.1–5.3, 1985.

    Google Scholar 

  39. Ivanov, K.G., A.F. Harshiladze, E.G. Eroshenko, V.A. Styazhkin, Configuration, structure and dynamics of magnetic clouds from solar flares in light of measurements on board VEGA 1 and VEGA 2 in January-Feburary, 1986, Solar Physics, 120, 407, 1989.

    Article  ADS  Google Scholar 

  40. Ivanov, K.G., A.F. Harshiladze, Dynamics of hydromagnetic clouds from powerful solar flares. Solar Physics, 92, 351, 1984.

    Article  ADS  Google Scholar 

  41. Jackson, B.V., R.A. Howard, N.R. Sheeley, Jr., DJ. Michels, MJ. Kooman, R.M. Illing, Helios spacecraft and earth perspective observations of three looplike solar mass ejection transients, J. Geophys. Res., 90, 5075, 1985.

    Article  ADS  Google Scholar 

  42. Kahler, S., Observations of coronal mass ejections near the sun, in Proc. of the Sixth International Solar Wind Conference, ed. by VJ. Pizzo, T.E. Holzer and D.G. Sime, NCAR Technical Note, NCAR/TN 306+Proc, 215, 1988.

    Google Scholar 

  43. Klein, L.W., L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87,613, 1982.

    Article  ADS  Google Scholar 

  44. Konigl, A., A. Choudhur, Force-free equilibria of magnetized jets, Astrophys. J., 289, 173, 1985.

    Article  ADS  Google Scholar 

  45. Kudo, S., M. Wada, T. Tanskannen, Transient cosmic ray increases associated with a geomagnetic storm, inProc. 19th ICRC, SH-5.1–8, 1985.

    Google Scholar 

  46. Kutchko, FJ., P.R. Briggs, T.P. Armstrong, The bidirectional particle event of October 12, 1977, possibly associated with a magnetic loop, J. Geophys. Res., 87, 1419, 1982.

    Article  ADS  Google Scholar 

  47. Lepping, R.P., F.M. Ipavich, L.F. Burlaga, A flare-related shock pair at 1 AU and related magnetic cloud, submitted to J. Geophys. Res., 1991.

    Google Scholar 

  48. Lepping, R.P., J.A. Jones, L.F. Burlaga, Magnetic Field strucUire of interplanetary magnetic clouds at IAU, J. Geophys. Res., 95, 11957, 1990.

    Article  ADS  Google Scholar 

  49. Lindeman, F.A., Phil. Mag., 38, 669, 1919.

    Google Scholar 

  50. Marsden, R.G., T.R. Sanderson, C. Tranquille, K.-P. Wenzel, ISEE-3 observations of low energy proton bidirectional events and their relation to interplanetary magnetic structures, J. Geophys. Res., 92, 11, 009, 1987.

    Google Scholar 

  51. Marubashi, K., Strucmre of the interplanetary magnetic clouds and their solar origins. Adv. Space Res., 6, 335, 1986.

    Article  ADS  Google Scholar 

  52. Meyer, P., E.N. Parker, J.A. Simpson, Solar cosmic rays of February 1956 and their propagation through interplanetary space, Phys. Rev., 104, 768, 1956.

    Article  ADS  Google Scholar 

  53. Montgomery, M.D., J.R. Asbridge, S.J. Bame, W.C. Feldman, Solar wind electron temperature depressions following some interplanetary shock waves: Evidence for magnetic merging?, J. Geophys. Res., 79, 3103, 1974.

    Article  ADS  Google Scholar 

  54. Morrison, P., Solar-connection variations of the cosmic rays, Phys. Rev., 95, 646, 1954.

    Google Scholar 

  55. Morrison, P., Solar origin of cosmic ray time variations, Phys. Rev., 101, 1397, 1956.

    Article  Google Scholar 

  56. Palmer, I.D., F.R. Allum, S. Singer, Bidu-ectional anisotropies in solar cosmic ray events: Evidence for magnetic botties, J. Geophys. Res., 83, 75, 1978.

    Article  ADS  Google Scholar 

  57. Parker, E.N., The gross dynamics of a hydromagnetic gas cloud, Ap. J. Supplement, 25, 51, 1957.

    ADS  Google Scholar 

  58. Piddington, J.H.. Phys. Rev., 112, 589, 1958.

    Article  ADS  Google Scholar 

  59. Pudovkin, M.I., S.A. Zaitseva, E.E. Benevolenska, The structure and parameters of flare streams, J. Geophys. Res., 83, 6649, 1979.

    Article  ADS  Google Scholar 

  60. Sanderson, T.R., R.G. Marsden, R. Reinhard, K.-P. Wenzel, E.J. Smith, Correlated particle and magnetic field observations of a large-scale magnetic loop structure behind an interplanetary shock, Geophys. Res. Lett., 10, 916, 1983.

    Article  ADS  Google Scholar 

  61. Sanderson, T.R., J. Beeck, R.G. Marsden, K.-P. Wenzel, R. B. McKibben, E.J. Smith, Energetic ion and cosmic ray characteristics of magnetic clouds, in Physics of Magnetic Flux Ropes, ed. by E.R. Priest, L.C. Lee and C.T. Russel, AGU Geophysical Monograph 58,1990.

    Google Scholar 

  62. Sams, E.T., S.M. Krimigis, Evidence for solar magnetic loops beyond IAU, Geophys. Res. Utt., 90, 19, 1985.

    Article  Google Scholar 

  63. Schatten, K.H., Evidence for coronal magnetic bottles at 10 solar radii. Solar Phys., 12, 484, 1970.

    Article  ADS  Google Scholar 

  64. Schatten, K.H., J.E. Schatten, Magnetic field structure in flare-associated solar wind disturbances, J. Geophys. Res., 77, 4858, 1972.

    Article  ADS  Google Scholar 

  65. Schwenn, R., H. Rosenbauer, K.-H. Mühlhäuser, Singly-ionized helium in the driver gas of an interplanetary’ shock wave, Geophys. Res. Lett., 7, 201–204, 1980.

    Article  ADS  Google Scholar 

  66. Schwenn, R., Direct correlation between coronal transients and interplanetary disturbances. Space Sci. Rev., 34, 85, 1983.

    ADS  Google Scholar 

  67. Steinolfson, R.S., M. Dryer, Y. Nakagawa, Interplanetary shock pair disturbances: Comparison of theory with space probe data, J. Geophys. Res., 80, 1989, 1975.

    Google Scholar 

  68. Strauss, H.R., The effect of ballooning modes on thermal transport and magnetic field diffusion in the solar corona, Geophys. Res. Lett., 16, 219, 1989.

    Article  ADS  Google Scholar 

  69. Suess, S.T., Magnetic clouds and the pinch effect, J. Geophys. Res., 93, 5437, 1988.

    Article  ADS  Google Scholar 

  70. Tang, F., B.T. Tsurutani, W.D. Gonzalez, S.-I. Akasofu, EJ. Smith, Solar sources of 10 southward Bz events responsible for geomagnetic storms (1978–1979), J. Geophys. Res., 94, 3535, 1989.

    Article  ADS  Google Scholar 

  71. Taylor, J.B., Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett., 33, 1974.

    Google Scholar 

  72. Taylor, J.B., Relaxation and magnetic reconnection in plasmas. Rev. Modem Physics, 58, No. 3, 741, 1986.

    Article  ADS  Google Scholar 

  73. Tranquille, C., T.R. Sanderson, R.G. Marsden, K.-P. Wenzel, EJ. Smith, Properties of a large-scale interplanetary loop structure as deduced from low-energy proton anisotropy and magnetic field measurements, J. Geophys. Res., 92, 6, 1987.

    Article  ADS  Google Scholar 

  74. Tsurutani, B.T., W.D. Gonzalez, F. Tang, S.-I. Akasofu, EJ. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978- 1979), J. Geophys. Res., 93, 8519, 1988.

    Article  ADS  Google Scholar 

  75. Voslambe, D., D.K. Callebaut, Stability of force-free magnetic fields, Phys. Rev., 128, 2016, 1962.

    Article  MathSciNet  ADS  Google Scholar 

  76. Webb, D.F., B.V. Jackson, Detection of CMEs in the interplanetary medium from 1976–1979 using Helios-2 Photometer data, in Proceedings of the Sixth International Solar Wind Conference, ed. by V J. Pizzo, T.E. Holzer and D.G. Sime, NCAR/TN-306+Proc, 267, 1987.

    Google Scholar 

  77. Wilson, R.M., E. Hildner, Are interplanetary magnetic clouds manifestations of coronal transients at IAU?, Solar Physics, 91, 168, 1984.

    Article  ADS  Google Scholar 

  78. Wilson, R.M., E. Hildner, On the association of magnetic clouds with disappearing filaments, J. Geophys. Res., 91, 5867, 1986.

    Article  ADS  Google Scholar 

  79. Wilson, R.M., Geomagnetic response to magnetic clouds. Planet. Space Sei., 35, 329, 1987.

    Article  ADS  Google Scholar 

  80. Woltjer, L., A theorem on force-free magnetic fields, Proc. National Academy of Sciences, 44, No. 6, 389, 1958.

    Article  Google Scholar 

  81. Yang, W.-H., Expansion of solar-terrestrial low-/3 plasmoid, Ap. J., 344, 966, 1989.

    Article  ADS  Google Scholar 

  82. Zhang, G., L.F. Burlaga, Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases, J. Geophys. Res., 93, 2511, 1988.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burlaga, L.F.E. (1991). Magnetic Clouds. In: Schwenn, R., Marsch, E. (eds) Physics of the Inner Heliosphere II. Physics and Chemistry in Space, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75364-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75364-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75366-4

  • Online ISBN: 978-3-642-75364-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics