Skip to main content

Numerical Simulations of Turbulent Plane Shear Layers

  • Conference paper
Turbulent Shear Flows 6

Abstract

Two-dimensional turbulent plane shear layers are simulated, using a finite-difference ψω unstationary numerical simulation. Vorticity and temperature (within the passive scalar approximation) fields are visualized. Direct numerical simulations (Reynolds number of 1000) and large-eddy simulations are performed. The following situations are envisaged:

  1. a)

    A temporally growing mixing layer (periodic in the basic flow direction) developing from a hyperbolic tangent velocity profile to which is superposed an infinitesimal white-noise perturbation. One shows that broad-band kinetic energy and temperature spectra develop after the first pairing. Evidence is given that the growth of the coherent structures is not simply monitored by spatial period doubling. The influence of the spatial resolution is also studied.

  2. b)

    A Bickley jet developing from a basic sech2y velocity profile. We study the temporal case. In the free case, this basic flow is perturbed by a small white noise. The forced case will correspond to the latter situation, to which a supplementary small deterministic perturbation at the most unstable sinuous mode is added. In the forced case, it is shown that the jet evolves towards a very stable Karman-like street if the deterministic perturbation is strong enough. By contrast, the street of vortices exhibits, in the free case, a turbulent behaviour with possibilities of pairing for eddies of same sign. The eventual state in this latter case is very similar to nearly isotropic two-dimensional turbulence with concentrated coherent vortices.

  3. c)

    A spatially growing mixing-layer, where the upstream basic flow is perturbed by a time-dependant white noise of small amplitude. The calculation shows a spreading rate of the layer in very good agreement with the experimental unperturbed mixing-layer data.

  4. d)

    A temporally growing mixing layer submitted to a differential rotation (β-effect). It is shown that the first pairing is delayed as β increases, and is inhibited for values of β larger than 0.05.

The Grenoble Institute of Mechanics is sponsored by the CNRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

ccomplex phase speed of the perturbation E(k):

two-dimensional kinetic-energy spectrum

E(k x ,t):

one-dimensional kinetic-energy spectrum

E θ (k x ,t):

one-dimensional temperature spectrum

f(y):

Gaussian filter and also Coriolis parameter in section on differential rotation

J :

Jacobian operator

k a :

most amplified wavenumber

l R :

Rhines scale

L :

size of the computational domain if square

L x , L y :

respectively: length and width of the domain if rectangular

m i :

number of fundamental modes in the computational domain n i = ε 2 /ε 1 deterministic to stochastic perturbation ratio

Re:

Reynolds number

S(t):

global enstrophy

u(x, y, t) = u(x, y, t)x + v(x, y, t)y :

velocity field

ū(y):

basic longitudinal velocity profile

ū(y, t):

x-averaged longitudinal velocity

U :

unit of velocity

U 0 :

advection velocity in spatially growing mixing layers

ṽ(y):

amplitude of the perturbation in Orr-Sommerfeld equation

β = ∂f/∂y :

defined in section on differential rotation

δ(t):

current vorticity thickness in temporal calculations

δ i :

initial vorticity thickness

δ 0 :

unit of length

δ viz :

visual thermal thickness of spatially growing mixing layers

δ w :

vorticity thickness of spatially growing mixing layers

Δt :

timestep

Δx :

spacestep

Δx pair :

advection distance during a pairing

\(\epsilon_1 \hat \psi\) :

white-noise perturbation

\(\epsilon_2 \tilde \psi (x)\) initial deterministic perturbation η = U 0 /U :

velocity ratio

θ(x, y, t):

passive temperature

\(\overline {\theta}(y)\) :

basic temperature profile

\(\overline {\theta}(y, t)\) :

x-averaged temperature

\(\hat \theta (k_z,y,t)\) :

one-dimensional Fourier transform of the temperature

κ :

molecular conductivity

λ a :

most amplified wavelength

v :

molecular viscosity

ξ :

transverse coordinate

ϱ = ϱ 0 + ϱ´:

density

σ :

non-dimensioned empiric constant

ψ(x, y, t):

stream-function

\(\bar \psi (y)\) :

stream-function of the basic flow

\(\bar \psi (y, t)\) :

x-averaged stream-function

ω(x, y, t) = ω(x, y, t):

z vorticity field

ω f(x, y, t) = ω(x, y, t):

z potential vorticity field

References

  1. Lesieur, M., Staquet, C., Le Roy, P., Comte, P. (1988): The mixing layer and its coherence examined from the point of view of two-dimensional turbulence. J. Fluid Mech. 192, 511–534

    Article  MathSciNet  ADS  Google Scholar 

  2. Drazin, P. G., Reid, W. H.: in Hydrodynamic Instability (Cambridge University Press 1981) pp. 233–237

    Google Scholar 

  3. Drazin, P. G., Howard, L. N. (1966): Hydrodynamic stability of parallel flow of in viscid fluid. Adv. Appl. Mech. 7, 142–250

    Google Scholar 

  4. Arakawa, A. (1966): Computational design for long-term numerical integration of the equations of fluid motion; two-dimensional incompressible flow. Part 1. J. Comput. Phys. 1, 119–143

    Article  ADS  MATH  Google Scholar 

  5. Batchelor, G. K. (1969): Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. II, 12, 233–239

    ADS  MATH  Google Scholar 

  6. Lesieur, M. (1987): Turbulence in fluids (Martinus Nijhoff Publishers, 1987)

    Book  MATH  Google Scholar 

  7. Schwartztrauber, P., Sweet, R. (1980): Efficient subprograms for the solution of E.P.D equations. N.C.A.R, Boulder Colorado

    Google Scholar 

  8. Batchelor, G. K. (1977): An Introduction to Fluid Dynamics (Cambridge University Press, 1977) pp. 534–535

    Google Scholar 

  9. Brown, G. L., Roshko, A. (1974): On density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, 775–816

    Article  ADS  Google Scholar 

  10. Reynolds, O. (1883): An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philos. Trans. Roy. Soc. pp. 51–105

    Google Scholar 

  11. Thorpe, S. A. (1968): A method of producing a shear flow in a stratified fluid. J. Fluid Mech. 32, 693–704

    Article  ADS  Google Scholar 

  12. Moffatt, H. K.: “Geophysical and Astrophysical Turbulence,” in Advances in Turbulence, ed. by G. Comte-Bellot, J. Mathieu (Springer, Berlin, Heidelberg 1987) pp. 228

    Chapter  Google Scholar 

  13. Gilbert, A. D. (1988): Spiral structures and spectra in two-dimensional turbulence. J. Fluid Mech. 193, 475–498

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Lesieur, M., Herring, J. R. (1985): Diffusion of a passive scalar in two-dimensional turbulence. J. Fluid Mech. 161, 77–95

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Babiano, A., Basdevant, C., Legras, B., Sadourny, R. (1987): Vorticity and passive scalar dynamics in two-dimensional turbulence. J. Fluid Mech. 183, 379–397

    Article  ADS  Google Scholar 

  16. Bickley, W. G. (1937): The plane jet. Philos. Mag, S. 7, Vol. 23, 156, 727–731

    Google Scholar 

  17. Kelly, R. E. (1968): On the resonant interaction of neutral disturbances in two in viscid shear flows. J. Fluid Mech. 31, 789–799

    Article  ADS  MATH  Google Scholar 

  18. Couder, Y., Basdevant, C., Thomé, H. (1984): Sur l’apparition de couples solitaires de tourbillons dans les sillages bidimensionnels turbulents. C.R. Acad. Sci. Paris, t. 299, série II, 3, pp. 89–94

    ADS  Google Scholar 

  19. Kourta, A., Boisson, H. C., Chassaing, P., Ha Minh, H. (1987): Non-linear interaction and the transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 181, 141–162

    Article  ADS  Google Scholar 

  20. Browne, L. W. B., Antonia, R. A., Bisset, D. K. (1986): Coherent structures in the far field of a turbulent wake. Phys. Fluids, 29 (11), pp. 3612–3617

    Article  ADS  Google Scholar 

  21. McWilliams, J. C. (1984): The emergence of isolated coherent vortices in turbulent flows. J. Fluid Mech. 146, 21–43

    Article  ADS  MATH  Google Scholar 

  22. Orlanski, I. (1976): A simple boundary condition for unbounded hyperbolic flows. J. Comp. Phys. 21, 251–269

    Article  ADS  MATH  Google Scholar 

  23. Verron, J., Le Provost, C. (1985): A numerical study of quasi-geostrophic flow over isolated topography. J. Fluid. Mech. 154, 231–252

    Article  ADS  Google Scholar 

  24. Rhines, P. B. (1975): Waves and turbulence on a β-plane. J. Fluid. Mech. 69, 417–443

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Comte, P., Lesieur, M., Laroche, H., Normand, X. (1989). Numerical Simulations of Turbulent Plane Shear Layers. In: André, JC., Cousteix, J., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73948-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73948-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73950-7

  • Online ISBN: 978-3-642-73948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics