Skip to main content

MIS: A Way to Derive the Dissipation Equation

  • Conference paper
Turbulent Shear Flows 6

Abstract

The MIS approach is an attempt to mimic the physics in order to obtain a dissipation equation. An a priori family of energy spectrum shapes is assumed and the evolution of the dissipation rate is deduced from the evolution of the energy spectrum. This method brings into evidence new time scales which are not accounted for in standard models. With these new time scales, the model is able to predict the evolution of homogeneous turbulence without tuning any constant with respect to experiment. Rotation and low-Reynolds-number effects can be introduced in the model. Further work is however needed to improve the simple linear model used to study the behaviour of the very large eddies and to extend the method to inhomogeneous flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aupoix, B. (1985): “Subgrid Scale Models for Homogeneous Anisotropic Turbulence,” in “Direct and Large Eddy Simulation of Turbulence” Notes on Numerical Fluid Mechanics, Vol. 15, ed. by U. Schumann and R. Friedrichs (Vieweg, Wiesbaden) pp. 37–66

    Google Scholar 

  • Aupoix, B. (1987): “Homogeneous turbulence: Two-point closures and applications to one-point closures,” AGARD-FDP-VKI Lecture Series No. 87.5

    Google Scholar 

  • Aupoix, B. (1987): “Application de modèles dans l’espace spectral à d’autres niveaux de fermeture en turbulence homogène;” Ph.D. Thesis, Université Claude Bernard, Lyon

    Google Scholar 

  • Aupoix, B., Cousteix, J., Liandrat, J. (1983): “Effects of Rotation on Isotropic Turbulence,” Fourth Symposium on Turbulent Shear Flows, Karlsruhe

    Google Scholar 

  • Aupoix, B., Cousteix, J., Liandrat, J. (1987): “MIS: An Alternative for the Dissipation Equation,” in Advances in Turbulence, ed. by G. Compte-Bellot, J. Mathieu (Springer, Berlin, Heidelberg) p. 176

    Chapter  Google Scholar 

  • Cambon, C., Teissèdre, C., Jeandel, D. (1985): Etude d’effets couplés de déformation et de rotation sur une turbulence homogène. J. Mécan. Théor. Appl. 4/5, 629–657

    MathSciNet  MATH  Google Scholar 

  • Champagne, F. H., Harris, V. G., Corrsin, S. (1970): Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41/1, 81–139

    Article  ADS  Google Scholar 

  • Comte-Bellot, G., Corrsin, S. (1966): The use of a contraction to improve the isotropy of grid generated turbulence. J. Fluid Mech. 25/4, 657–682

    Article  ADS  Google Scholar 

  • Gence, J. N., Mathieu, J. (1979): On the application of successive plane strains to grid generated turbulence. J. Fluid Mech. 93/3, 501–513

    Article  ADS  Google Scholar 

  • Harris, V. G., Graham, J. A. H., Corrsin, S. (1977): Further experiments in nearly homogeneous turbulent shear flow. J. Fluid Mech. 81/4, 657–687 and Corrigendum 86/4, 795–796

    Article  ADS  Google Scholar 

  • Launder, B. E., Reece, G. J., Rodi, W. (1975): Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68/3, 537–566

    Article  ADS  MATH  Google Scholar 

  • Lin, A., Wolfshtein, M. (1980): Tensorial volumes of turbulence. Phys. Fluids 23/3, 644–646

    Article  ADS  MATH  Google Scholar 

  • Pao, Y. H. (1965): Structure of turbulent velocity and scale fields at large wavenumbers. Phys. Fluids 8, 1063

    Article  ADS  Google Scholar 

  • Patel, V. C., Rodi, W., Scheurer, G. (1985): Turbulence models for near-wall and low-Reynolds-number flows: a review. AIAA J. 23/9 1308–1318

    Article  MathSciNet  ADS  Google Scholar 

  • Reynolds, W. C. (1974): Computation of turbulent flows. AIAA Paper 74–556

    Google Scholar 

  • Rose, W. G. (1966): Results of an attempt to generate a homogeneous turbulent shear flow. J. Fluid Mech. 25/1, 97–120

    Article  ADS  Google Scholar 

  • Rotta, J. C. (1951): Statistische Theorie nichthomogener Turbulenz. Z. Phys. 129, 547–572, 131, 51–77

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Saffman, P. G. (1963): On the fine scale structure of vector fields convected by a turbulent field. J. Fluid Mech. 16, 545

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shirani, E., Ferziger, J. H., Reynolds, W. C. (1981): “Mixing of a Passive Scalar in Isotropic and Sheared Homogeneous Turbulence;” Stanford University. Thermosciences Division. Report TF-15

    Google Scholar 

  • Tavoularis, S., Corrsin, S. (1981): Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. J. Fluid Mech. 104, 311–367

    Article  ADS  Google Scholar 

  • Townsend, A. A. (1954): The distortion of turbulence by irrotational plane strain. Q. J. Mech. Appl. Math. 7/1, 104–127

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aupoix, B., Cousteix, J., Liandrat, J. (1989). MIS: A Way to Derive the Dissipation Equation. In: André, JC., Cousteix, J., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73948-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73948-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73950-7

  • Online ISBN: 978-3-642-73948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics