Skip to main content

Discrimination Factors on Different Trophic Levels in Relation to the Trace Element Content in Human Bones

  • Conference paper
Trace Elements in Environmental History

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The concentration of strontium and other trace elements in bones of living humans and animals reflect the levels in the environment (Underwood 1977, Rheingold et al. 1983, Price et al. 1985b). Historic and prehistoric bones may thus contain information on past environments. The chemical composition of bones that have been buried for a long period may, however, have changed by diagenetic processes, which result in the loss of information. The concentrations of some of the trace elements in bones appear to be fairly stable and may remain almost unchanged for very long periods of contact between bone and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bameveld AA van (1983) De invloed van fytaatin de voeding: een overzicht. Voeding 44: 51–58.

    Google Scholar 

  • Bartlett BO, Gunn KB (1962) Discrimination between stable strontium and calcium in cereal grain. Agr Res Counc Radiob Lab Ann Rep 1961–62: 77–78.

    Google Scholar 

  • Brothwell DR, Brothwell P (1969) Food in antiquity. Thames and Hudson, London.

    Google Scholar 

  • Chipman WA (1966) Food chains in the sea. In: Russel RS (ed) Radioactivity and human diet. Pergamon Press, Oxford. p421.

    Google Scholar 

  • (Hollander R (1941) Selective absorption of cations by higher plants. Plant Phys 16: 691–720.

    Article  Google Scholar 

  • Comar CL (1967) Some principles of strontium metabolism: Implications, applications, limitations. In: Lenihan JMA, Loutit JF, Martin JH (eds) Strontium metabolism. Academic Press, London, p 17.

    Google Scholar 

  • Comar CL, Russell RS, Wasserman RH (1957) Strontium-calcium movement from soil to man. Science 126: 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Dupuis Y, Fournier P (1963) Lactose and the absorption of calcium and strontium. In: Wasserman RH (ed) The transfer of calcium and strontium across biological membranes. Academic Press, New York, p 277.

    Google Scholar 

  • Fry GF (1985) Analysis of fecal material. In: Gilbert RI, Mielke JH (eds) The analysis of prehistoric diets. Academic Press, Orlando. p127.

    Google Scholar 

  • Gilbert RI (1985) Stress, paleonutrition and trace elements. In: Gilbert RI, Mielke JH (eds) The analysis of prehistoric diets. Academic Press, Orlando, p 339.

    Google Scholar 

  • Hayden B (1981) Subsistence and ecological adaptations of modern hunter/gatherers. In: Harding RSO, Teleki G (eds) Omnivorous primates. Columbia Univ Press, New York, p 344.

    Google Scholar 

  • Holdgate MW (1979) A perspective of environmental pollution. Cambridge Univ Press, Cambridge.

    Google Scholar 

  • Iserman K (1981) Uptake of stable strontium by plants and effects on plant growth. In: Skoryna SC (ed) Handbook of stable strontium. Plenum Press, New York, p 65.

    Google Scholar 

  • Jonxis JHP (1983) Sporenelementen. Voeding 44: 266–273.

    CAS  Google Scholar 

  • Lambert JB, Szpunar CB, Buikstra JE (1979) Chemical analysis of excavated human bones from Middle and Late Woodland sites. Archaeometry 21: 115–129.

    Article  CAS  Google Scholar 

  • Lambert JB, Vlasak SM, Thometz AC, Buikstra JE (1982) A comparative study of the chemical analysis of ribs and femurs in Woodland populations. Amer J Phys Anthrop 59: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Lengemann FW (1963) Over-all aspects of calcium and strontium absorption. In: Wasserman RH (ed) The transfer of calcium and strontium across biological membranes. Academic Press, New York, p 85.

    Google Scholar 

  • Luten JB (1983) Spoorelementen in voor de consumptie bestemde zeewieren. Voeding 44: 232–236.

    CAS  Google Scholar 

  • Menzel RG, Heald WR (1955) Distribution of potassium, rubidium, cesium, calcium and strontium within plants grown in nutrient solutions. Soil Sci 80: 287–293.

    Article  CAS  Google Scholar 

  • Nriagu JO (1983) Lead and lead poisoning in classical antiquity. John Wiley, New York.

    Google Scholar 

  • Paul AA, Southgate DAT (1978) McCance & Widdowson’s The composition of foods, 4th ed. HMSO, London; Elsevier/Norht-Holland, Amsterdam.

    Google Scholar 

  • Prasad AS (ed) (1976) Trace elements in human health and disease, vol. 1: Zinc and copper. Academic Press, New York.

    Google Scholar 

  • Price TD, Connor M, Parsen JD (1985a) Bone chemistry and the reconstruction of diet: strontium discrimination in white-tailed deer. J Archaeol Sci 12: 419–442.

    Article  Google Scholar 

  • Price TD, Schoeninger MJ, Armelagos GJ (1985b) Bone chemistry and past behaviour: an overview. J Hum Evol 14: 419–447.

    Article  Google Scholar 

  • Rheingold AL, Hues S, Cohen MN (1983) Strontium and zinc content in bones as an indication of diet. J Chem Educ 60: 233–234.

    Article  CAS  Google Scholar 

  • Rosenthal HL, Cochran OA, Eves MM (1970) Common strontium content concentration of mineralized tissues from marine and sweet water animals. Comp Biochem Phys 32: 445–450.

    Article  CAS  Google Scholar 

  • Runia LT (1987a) Analysis of bone from the Bronze Age site Bovenkarspel-Het Valkje, the Netherlands: a preliminary report. Archaeometry 29. (in press)

    Google Scholar 

  • Runia LT (1987b) Strontium and calcium distribution in plants: effect on paleodietary studies. J Archaeol Sci 14. (in press)

    Google Scholar 

  • Runia LT (1987c) The chemical analysis of prehistoric bones. A paleodietary and ecoarchaeological study of Bronze Age West-Friesland. BAR, Oxford (BAR Int. Series). (in press).

    Google Scholar 

  • Schoeninger MJ (1982) Diet and the evolution of modern human form in the Middle East. Amer J Phys Anthrop 58: 37–52.

    Article  PubMed  CAS  Google Scholar 

  • Schoeninger MJ (1985) Trophic level effects on N/ N and C/ C ratios in bone collagen and strontium levels in bone mineral. J Hum Evol 14: 515–525.

    Article  Google Scholar 

  • Sillen A (1981) Strontium and diet at Hayonim cave, Israel: an evaluation of the strontium/calcium technique for investigating prehistoric diets. PhD diss., Univ. of Pennsylvania.

    Google Scholar 

  • Sillen A, Kavanagh M (1982) Strontium and paleodietary research: a review. Yearb Phys Anthrop 25: 67–90.

    Article  Google Scholar 

  • Smith KA (1971a) The comparative uptake and translocation by plants of calcium, strontium, barium and radium. I. Bertholetta excelsa (Brazil Nut Tree). Plant Soil 34: 369–379.

    Article  CAS  Google Scholar 

  • Smith KA (1971b) The comparative uptake and translocation by plants of calcium, strontium, barium and radium. II. Triticum vulgare (wheat). Plant Soil 34: 643–651.

    Article  CAS  Google Scholar 

  • Smith LH, Rasmussen DC, Myers WM (1963) Influence of genotype upon relationship of strontium-89 to calcium in grain of barley and wheat. Crop Sci 3: 386–389.

    Article  Google Scholar 

  • Thornton I (this volume) Soil features and human health.

    Google Scholar 

  • Toots H, Voorhies MR (1965) Strontium in fossil bones and the reconstruction of food chains. Science 149: 854–855.

    Article  PubMed  CAS  Google Scholar 

  • Underwood EJ (1977) Trace elements in human and animal nutrition. Academic Press, New York.

    Google Scholar 

  • Wasserman RH, Comar CL, Papadopoulou D (1957) Dietary calcium levels and retention of radiostrontium in the growing rat. Science 126: 1180–1182.

    Article  PubMed  CAS  Google Scholar 

  • Weast RC (ed) (1973) Handbook of chemistry and physics, 54th ed. CRC Press, Cleveland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Runia, L. (1988). Discrimination Factors on Different Trophic Levels in Relation to the Trace Element Content in Human Bones. In: Grupe, G., Herrmann, B. (eds) Trace Elements in Environmental History. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73297-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73297-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73299-7

  • Online ISBN: 978-3-642-73297-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics