Skip to main content

Regulatory Properties of Bovine Brain Calmodulin-Dependent Phosphatase

  • Conference paper
Calcium and Calcium Binding Proteins

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 81 Accesses

Abstract

Phosphorylation is an important cellular regulatory mechanism, controlling and coordinating various enzymic activities. The relative concentration of phosphorylated and nonphosphorylated forms of the appropriate substrates must be properly maintained if they are to function in a regulatory capacity. The level of phosphorylation of a substrate is thus dependent upon a balance between the activities of kinases and those of phosphatases. Although considerable emphasis has been placed on the regulation of protein kinases, it is now evident that protein phosphatases are also subject to an intricate system of control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aitken A, Bilham T, Cohen P, Aswad D, Greengard P (1981) A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. HI. Amino acid sequences at the two phosphorylation sites. J Biol Chem 256:3501–3506

    PubMed  CAS  Google Scholar 

  • Aitken A, Cohen P, Santikarn S, Williams DH, Calder AG, Smith A, Klee CB (1982) Identification of the NH2-terminal blocking group of calcineurin B as myristic acid. FEBS Lett 150:314–318

    Article  PubMed  CAS  Google Scholar 

  • Aitken A, Klee CB, Cohen P (1984) The structure of subunit B of calcineurin. Eur J Biochem 139:663–671

    Article  PubMed  CAS  Google Scholar 

  • Anthony FA, Merat DL, Cheung WY (1986) A spectrofluorimetric assay of calmodulin-dependent protein phosphatase using 4-methylumbelliferyl phosphate. Anal Biochem 155:103–107

    Article  PubMed  CAS  Google Scholar 

  • Anthony FA, Winkler MA, Edwards HH, Cheung WY (1987) A quantitative subcellular localization of calmodulin-dependent phosphatase in chick forebrain. J Neuroscience (in press)

    Google Scholar 

  • Aswad DW, Greengard P (1981) A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. I. Purification and characterization. J Biol Chem 256:3487–3493

    PubMed  CAS  Google Scholar 

  • Ballou LM, Fischer EH (1986) Phosphoprotein phosphatases. The Enzymes 16:311–361

    Article  Google Scholar 

  • Billingsley ML, Kincaid RL, Lovenberg W (1985) Stoichiometric methylation of calcineurin by protein carboxyl 0-methyltransferase and its effects on calmodulin-stimulated phosphatase activity. Proc Natl Acad Sci 82:5612–5616

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal DK, Takio K, Hansen RS, Krebs EG (1986) Dephosphorylation of cAMP-dependent protein kinase regulatory subunit (Type II) by calmodulin-dependent protein phosphatase. J Biol Chem 261:8140–8145

    PubMed  CAS  Google Scholar 

  • Brissette RE, Cunningham EB, Swislocki NI (1983) A Ca2+-dependent phosphoprotein phosphatase of the erythrocyte membrane. Fed Proc, Fed Am Soc Exp Biol 42:2030 (abstract)

    Google Scholar 

  • Burgess WH, Jemiolo DK, Kretsinger RH (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta 623:257–270

    PubMed  CAS  Google Scholar 

  • Camilli PD, Greengard P (1986) Synapsin I; A synaptic vesicle-associated neuronal phosphoprotein. Biochem Pharm 35:4349–4357

    Article  PubMed  Google Scholar 

  • Carlin RK, Grab DJ, Siekevitz P (1981) Function of calmodulin in postsynaptic densities. III. Calmodulin-binding proteins of the postsynaptic density. J Cell Biol 89:449–455

    Article  PubMed  CAS  Google Scholar 

  • Chan CP, Gallis B, Blumenthal DK, Pallen CJ, Wang JH, Drebs EG (1986) Characterization of the phosphotyrosyl protein phosphatase activity of calmodulin-dependent protein phosphatase. J Biol Chem 261:9890–9895

    PubMed  CAS  Google Scholar 

  • Chantier PD (1985) Calcium-dependent association of a protein complex with the lymphocyte plasma membrane — probable identity with calmodulin-calcineurin. J Cell Biol 101:207–216

    Article  Google Scholar 

  • Chernoff J, Sells MA, Li H-C (1984) Characterization of phosphotyrosyl-protein phosphatase activity associated with calcineurin. Biochem Biophys Res Commun 121:141–148

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1971) Cyclic 3′,5′-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J Biol Chem 246:2859–2869

    PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1984) Biological functions of calmodulin. Harvey Lec 79:173–216

    CAS  Google Scholar 

  • Cohen P, Rylatt DB, Nimmo GA (1977) The hormonal control of glycogen metabolism: The amino acid sequence at the phosphorylation site of protein phosphatase inhibitor-1. FEBS Lett 76:182–186

    Article  PubMed  CAS  Google Scholar 

  • Cooper NGF, McLaughlin BJ, Tallant EA, Cheung WY (1985) Calmodulin-dependent protein phosphatase: immunocytochemical localization in chick retina. J Cell Biol 101:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Detre JA, Nairn AC, Aswad DW, Greengard P (1984) Localization in mammalian brain of G-sub-strate, a specific substrate for guanosine 3′:5′-cyclic monophosphate-dependent protein kinase. J Neurosci 4:2843–2849

    PubMed  CAS  Google Scholar 

  • Foulkes JG, Maller JL (1982) In vivo actions of protein phosphatase inhibitor-2 in Xenopus oocytes. FEBS Lett 150:155–160

    Article  PubMed  CAS  Google Scholar 

  • Foulkes G, Ernst V, Levin D (1982) Separation and identification of Type 1 and Type 2 protein phosphatases from rabbit reticulocyte lysates. Fed Proc, Fed Am Soc Exp Biol 41:648 (abstract)

    Google Scholar 

  • Gagnon C (1983) Enzymatic carboxyl methylation of calcium-binding proteins. Can J Cell Biol 61:921–926

    Article  CAS  Google Scholar 

  • Gagnon C, Kelley S, Manganiello V, Vaughan M, Odya C, Strittmatter W, Hoffman A, Hirata F (1981) Modification of calmodulin function by enzymatic carboxyl methylation. Nature (Lond) 291:515–516

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Yamamoto H, Fukunaga K, Iwasa T, Matsukado Y, Miyamoto E (1985) Dephosphoryla-tion of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J Neurochem 45:276–283

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Matsukado Y, Mihara Y, Inoue N, Miyamoto E (1986) Calcineurin as a neuronal marker of human brain tumors. Brain Res 371:237–243

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Chan K-FJ (1983) Identification, purification, and partial characterization of a membrane-bound phosphoprotein from bovine brain. Fed Proc, Fed Am Soc Exp Biol 42: 2048 (abstract)

    Google Scholar 

  • Gupta RC, Khandelwal RL, Sulakhe PV (1984) Intrinsic phosphatase activity of bovine brain calcineurin requires a tightly bound trace metal. FEBS Lett 169:251–255

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC, Khandelwal RL, Sulakhe PV (1985) Resolution of bovine brain calcineurin subunits: stimulatory effect of subunit B on subunit A phosphatase activity. FEBS Lett 190:104–108

    Article  PubMed  CAS  Google Scholar 

  • Hemmings HCJr, Greengard P (1986) DARPP-32, a dopamine- and adenosine 3′:5′-monophos-phate-regulated phosphoprotein: Regional, tissue, and phylogenetic distribution. J Neurosci 6: 1469–1481

    PubMed  CAS  Google Scholar 

  • Hemmings HCJr, Greengard P, Tung HYL, Cohen P (1984a) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphtase-1. Nature (Lond) 310: 503–505

    Article  PubMed  CAS  Google Scholar 

  • Hemmings HCJr, Nairn AD, Aswad DW, Greengard P (1984b) DARPP-32, a dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J Neurosci 4:99–110

    PubMed  CAS  Google Scholar 

  • Hemmings HCJr, Williams KR, Konigsberg WH, Greengard P (1984c) DARPP-32, a dopamine-and adenosine 3′:5′-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J Biol Chem 259:14486–14490

    PubMed  CAS  Google Scholar 

  • Ingebritsen TS, Stewart AA, Cohen P (1983) The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues: An assessment of their physiological roles. Eur J Biochem 132:297–307

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RL, Vaughan M (1986) Direct comparison of Ca2+ requirement for calmodulin interaction with and activation of protein phosphatase. Proc Natl Acad Sci USA 83:1193–1197

    Article  PubMed  CAS  Google Scholar 

  • King MM (1986) Modification of the calmodulin-stimulated phosphatase, calcineurin, by sulfhydryl reagents. J Biol Chem 261:4081–4084

    PubMed  CAS  Google Scholar 

  • King MM, Huang CY (1983) Activation of calcineurin by nickel ions. Biochem Biophys Res Commun 114:955–961

    Article  PubMed  CAS  Google Scholar 

  • King MM, Huang CY (1984) The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate and divalent metal ions. J Biol Chem 259:8847–8856

    PubMed  CAS  Google Scholar 

  • King MM, Huang CY, Chock PB, Nairn AC, Hemmings HC Jr, Chan K-FJ, Greengard P (1984) Mammalian brain phosphoproteins as substrates for calcineurin. J Biol Chem 259:8080–8083

    PubMed  CAS  Google Scholar 

  • Klee CB, Haiech J (1980) Concerted role of calmodulin and calcineurin in calcium regulation. Ann NY Acad Sci 356:43–54

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Krinks MH (1978) Purification of cyclic 3′,5′-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry 17:120–126

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: A calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 76:6270–6273

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Krinks MH, Manalan AS, Cohen P, Stewart AA (1983a) Isolation and characterization of bovine brain calcineurin: A calmodulin-stimulated protein phosphatase. In: Means AR, O’Malley BW (eds) Methods in enzymology. Vol 102. Academic Press, New York, pp 227–244

    Google Scholar 

  • Klee CB, Newton DL, Krinks M (1983b) Versatility of calmodulin as a cytosolic regulator of cellular function. In: Chaiken IM, Wilchek M, Parikh I (eds) Affinity chromatography and biological recognition. Academic Press, New York, pp 55–67

    Google Scholar 

  • Klumpp S, Steiner AL, Schultz JE (1983) Immunocytochemical localization of cyclic GMP, cGMP-dependent protein kinase, calmodulin and calcineurin in Paramecium tetraurelia. Eur J Cell Biol 32:164–170

    PubMed  CAS  Google Scholar 

  • Kretsinger RH (1980) Structure and evolution of calcium-moudulated proteins. CRC Crit Rev Biochem 8:119–174

    Article  PubMed  CAS  Google Scholar 

  • Krinks MH, Haiech J, Rhoads A, Klee CB (1984) Reversible and irreversible activation of cyclic nucleotide phosphodiesterase: Separation of the regulatory and catalytic domains by limited proteolysis. Adv Cyclic Nucleotide Protein Phosphorylation Res 16:31–47

    PubMed  CAS  Google Scholar 

  • Kuret J, Bell H, Cohen P (1986) Identification of high levels of protein phosphatase-1 in rat liver nuclei. FEBS Lett 203:197–202

    Article  PubMed  CAS  Google Scholar 

  • Li H-C (1984) Activation of brain calcineurin phosphatase towards nonprotein phosphoesters by Ca2+, calmodulin and Mg2+. J Biol Chem 259:8801–8807

    PubMed  CAS  Google Scholar 

  • Li H-C, Chan WS (1984) Activation of brain calcineurin towards proteins containing Thr(P) and Ser(P) by Ca2+, calmodulin, Mg2+ and transition metal ions. Eur J Biochem 144:447–452

    Article  PubMed  CAS  Google Scholar 

  • Lin YM, Cheung WY (1980) Ca2+-dependent cyclic nucleotide phosphodiesterase. In: Cheung WY (ed) Calcium and cell function. Vol 1. Academic Press, New York, pp 79–104

    Google Scholar 

  • Manalan AS, Klee CB (1983) Activation of calcineurin by limited proteolysis. Proc Natl Acad Sei USA 80:4291–4295

    Article  CAS  Google Scholar 

  • Martin B, Pallen CJ, Wang JH, Graves DJ (1985) Use of fluorinated tyrosine phosphates to probe the substrate specificity of the low molecular weight phosphatase activity of calcineurin. J biol Chem 260:14932–14937

    PubMed  CAS  Google Scholar 

  • Merat DL, Hu ZY, Carter TE, Cheung WY (1984) Subunit A of calmodulin-dependent phosphatase requires Mn2+ for activity. Biochem Biophys Res Commun 122:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Merat DL, Hu ZY, Carter TE, Cheung WY (1985) Bovine brain calmodulin-dependent protein phosphatase: regulation of subunit A activity by calmodulin and subunit B. J Biol Chem 260:11053–11059

    PubMed  CAS  Google Scholar 

  • Murthy ASN, Flavin M (1983) Microtubule assembly using the microtubule-associated protein MAP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase. Eur J Biochem 137:37–46

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Greengard P (1984) Protein phosphorylation in nervous tissue. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Catecholamines. Part A: Basic and peripheral mechanisms. Liss Inc, New York, pp 9–22

    Google Scholar 

  • Nimmo GA, Cohen P (1978) The regulation of glycogen metabolism. Phosphorylation of inhibitor-1 from rabbit skeletal muscle, and its interaction with protein phosphatase-III and -II. Eur J Biochem 87:353–367

    Article  PubMed  CAS  Google Scholar 

  • Ouimet CC, Miller PE, Hemmings HCJr, Walaas SI, Greengard P (1984) DARPP-32, a dopamine and adenosine 3′:5′-monophosphate regulated phosphoprotein enriched in dopamine-inner-vated brain regions. III. Immunocytochemical localization. J Neurosci 4:111–124

    PubMed  CAS  Google Scholar 

  • Pallen CJ, Wang JH (1983) Calmodulin-stimulated dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine by calcineurin. J Biol Chem 258:8550–8553

    PubMed  CAS  Google Scholar 

  • Pallen CJ, Wang JH (1984) Regulation of calcineurin by metal ions. Mechanism of activation by Ni2+ and enhanced response to Ca2+/calmodulin. J Biol Chem 259:6134–6141

    PubMed  CAS  Google Scholar 

  • Pallen CJ, Wang JH (1986) Stoichiometry and dynamic interaction of metal ion activators with calcineurin phosphatase. J Biol Chem 261:16115–16120

    PubMed  CAS  Google Scholar 

  • Pallen CJ, Valentine KA, Wang JH, Hollenberg MD (1985) Calcineurin-mediated dephosphorylation of human placental membrane receptor for epidermal growth factor urogastrone. Biochemistry 24:4724–4730

    Article  Google Scholar 

  • Patel J, Lanciotti M, Huang CY (1986) Phosphorylation of calmodulin-dependent protein phosphatase by protein kinase C. Fed Proc, Fed Am Soc Exp Biol 45:1884 (abstract)

    Google Scholar 

  • Schlicter DJ, Casnellie JE, Greengard P (1978) An endogenous substrate for cGMP-dependent protein kinase in mammalian cerebellum. Nature (Lond) 273:61–62

    Article  Google Scholar 

  • Sharma RK, Wang JH (1985) Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci USA 82:2603–2607

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK, Desai R, Waisman DM, Wang JH (1979) Purification and subunit structure of bovine brain modulator binding protein. J Biol Chem 254:4276–4282

    PubMed  CAS  Google Scholar 

  • Singh TJ, Wang JH (1986) Phosphorylation and activation of calcineurin by glycogen synthase (casein) kinase-1 and cyclic AMP-dependent protein kinase. Fed Proc, Fed Am Soc Exp Biol 45:1803 (abstract)

    Google Scholar 

  • Stewart AA, Ingebritsen TS, Manalan A, Klee CB, Cohen P (1982) Discovery of a Ca2+- and calmodulin-dependent protein phosphatase. Probable identity with calcineurin (CaM-BP80).FEBS Lett 137:80–84

    PubMed  CAS  Google Scholar 

  • Stewart AA, Ingebritsen TS, Cohen P (1983) The protein phosphatases involved in cellular regulation. 5. Purification and properties of a Ca2+/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle. Eur J Biochem 132:289–295

    Article  PubMed  CAS  Google Scholar 

  • Stull GT, Nunnally MH, Michnoff CH (1986) Calmodulin-dependent protein kinases. The Enzymes 17:113–166

    Article  CAS  Google Scholar 

  • Tallant EA (1983) Purification and characterization of calmodulin-dependent protein phosphatase from bovine brain. PhD Dessertation Univ Tennessee Center for the Health Sciences, Memphis

    Google Scholar 

  • Tallant EA, Cheung WY (1983) Calmodulin-dependent protein phosphatase: A developmental study. Biochemistry 22:3630–3635

    Article  PubMed  CAS  Google Scholar 

  • Tallant EA, Cheung WY (1984a) Activation of bovine brain calmodulin-dependent protein phosphatase by limited trypsinization. Biochemistry 23:260–279

    Article  Google Scholar 

  • Tallant EA, Cheung WY (1984b) Characterization of bovine brain calmodulin-dependent protein phosphatase. Arch Biochem Biophys 232:260–279

    Article  Google Scholar 

  • Tallant EA, Cheung WY (1986) Calmodulin-dependent protein phosphatase. In: Cheung WY (ed) Calcium and cell function. Vol 6. Academic Press, New York, pp 71–112

    Google Scholar 

  • Tallant EA, Wallace RW (1985) Characterization of a calmodulin-dependent phosphatase from human platelets. J Biol Chem 260:7744–7751

    PubMed  CAS  Google Scholar 

  • Tonks NK, Cohen P (1983) Calcineurin is a calcium ion-dependent, calmodulin-stimulated protein phosphatase. Biochim Biophys Acta 747:191–193

    Article  PubMed  CAS  Google Scholar 

  • Tung HYL (1986) Phosphorylation of the calmodulin-dependent protein phosphatase by protein kinase C. Biochem Biophys Res Commun 138:783–788

    Article  PubMed  CAS  Google Scholar 

  • Walaas SI, Greengard P (1984) DARPP-32, a dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci 4:84–98

    PubMed  CAS  Google Scholar 

  • Walaas SI, Aswad DW, Greengard P (1983) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature (Lond) 301:69–71

    Article  PubMed  CAS  Google Scholar 

  • Wallace RW, Lynch TJ, Tallant EA, Cheung WY (1978) An endogenous inhibitor protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. Arch Biochem Biophys 187:328–334

    Article  PubMed  CAS  Google Scholar 

  • Wallace RW, Lynch TJ, Tallant EA, Cheung WY (1979) Purification and characterization of an inhibitor protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. J Biol Chem 254:377–382

    PubMed  CAS  Google Scholar 

  • Wallace RW, Tallant EA, Cheung WY (1980) High levels of a heat-labile calmodulin-binding protein (CaM-BP80) in bovine neostriatum. Biochemistry 19:1831–1837

    Article  PubMed  CAS  Google Scholar 

  • Wallace RW, Tallant EA, Dockter ME, Cheung WY (1982) Calcium binding domains of calmodulin. J Biol Chem 257:1845–1854

    PubMed  CAS  Google Scholar 

  • Wang JH, Desai R (1976) A brain protein and its effect on the Ca2+- and protein modulator-activated cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 72:926–932

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Sharma RK, Tarn SW (1980) Calmodulin-binding proteins. In: Cheung WY (ed) Calcium and cell function. Vol 1. Academic Press, New York, pp 305–328

    Google Scholar 

  • Wang JH, Pallen CJ, Brown ML, Mitchell KJ (1984) A survey of calcineurin activity toward nonprotein substrates. Fed Proc, Fed Am Soc Exp Biol 43:1897 (abstract)

    Google Scholar 

  • Winkler MA, Merat DL, Tallant EA, Hawkins S, Cheung WY (1984) Catalytic site of calmodulin-dependent protein phosphatase from bovine brain resides in subunit A. Proc Natl Acad Sci USA 81:3054–3058

    Article  PubMed  CAS  Google Scholar 

  • Wolf H, Hofmann F (1980) Purification of myosin light chain kinase from bovine cardiac muscle. Proc Natl Acad Sci USA 77:5852–5855

    Article  PubMed  CAS  Google Scholar 

  • Wolff DJ, Sved DW (1985) The divalent cation dependence of bovine brain calmodulin-dependent phosphatase. J Biol Chem 260:4195–4202

    PubMed  CAS  Google Scholar 

  • Wood JG, Wallace RW, Whitaker JN, Cheung WY (1980a) Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BP80) in basal ganglia of mouse brain. J Cell Biol 84:66–76

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Wallace RW, Whitaker JN, Cheung WY (1980b) Immunocytochemical localization of calmodulin in regions of rodent brain. Ann NY Acad Sci 356:75–82

    Article  PubMed  CAS  Google Scholar 

  • Yang S-D, Tallant EA, Cheung WY (1982) Calcineurin is a calmodulin-dependent protein phosphatase. Biochem Biophys Res Commun 106:1419–1425

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheung, W.Y. (1988). Regulatory Properties of Bovine Brain Calmodulin-Dependent Phosphatase. In: Gerday, C., Bolis, L., Gilles, R. (eds) Calcium and Calcium Binding Proteins. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73042-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73042-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73044-3

  • Online ISBN: 978-3-642-73042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics