Skip to main content

Self-Organized Behaviour of Distributed Autonomous Mobile Robotic Systems by Pattern Formation Principles

  • Conference paper
Distributed Autonomous Robotic Systems 3

Abstract

Self-organized behaviour of distributed autonomous mobile robotic systems is achieved by using pattern formation principles for controlling the robotic units. Several autonomous mobile robotic units are randomly distributed on a plane or in a space, and every unit has to be assigned to one and only one target, a point in the plane or space where some task has to be done. The costs of working on the tasks are given in dependence of the robotic units. Furthermore, the distances between the initial coordinates of the robotic units and the coordinates of the targets are converted into costs. The total costs, i.e., the sum of all costs which have to be incurred, have to be minimized. The proposed algorithm is error resistant and allows sudden changes like a breakdown of some robotic units. The self-organizing behaviour of the robotic units works in analogy to the emergence of rolls or hexagonal patterns in the Bénard problem of fluid dynamics. Simulations of the time-dependent self-organized behaviour of the distributed autonomous mobile robotic system are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Fukuda, T. and T. Ueyama (1994). Cellular Robotics and Micro Robotic Systems. Vol. 10 of World Scientific Series in Robotics and Automated Systems World Scientific.

    Google Scholar 

  • Fukuda, T., M. Buss, H. Hosokai and Y. Kawauchi (1991). Cell structured robotic system cebot: Control, planning and communication methodsRobotics and Autonomous Systems. 7, 239–248.

    Article  Google Scholar 

  • Fukuda, T., Y. Kawauchi and H. Asama (1990). Dynamically reconfigurable robotic systems — optimal knowledge allocation for cellular robotic system (cebot). Journal of Robotics and Mechalronics 2 (6), 22–30.

    Google Scholar 

  • Garey, M. and D. Johnson (1979). Computers and Intractability. Feeman and Company. San Francisco.

    MATH  Google Scholar 

  • Haken, H. (1979). Pattern formation and pattern recognition — an attempt at a synthesis. In: Pattern Formation by Dynamic Systems and Pattern Recognition ( IL Haken, Ed.). pp. 2–13. Springer-Verlag. Heidelberg, Berlin, New York.

    Chapter  Google Scholar 

  • Haken, H. (1983a). Advanced Synergetics. Springer-Verlag. Heidelberg, Berlin, New York.

    MATH  Google Scholar 

  • Haken, H. (1983b). Synergetics, An Introduction Springer-Verlag. Heidelberg, Berlin, New York.

    Google Scholar 

  • Haken, H. (1991). Synergetic Computers and Cognition — A Top-Down Approach to Neural Nets. Springer-Verlag. Heidelberg, Berlin, New York.

    Google Scholar 

  • Hopficld, J. (1982). Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Sciences. Vol. 79. pp. 2554–2558.

    Google Scholar 

  • Kohonen, T. (1984). Self-Organization and Associative Memory. Springer-Verlag. Berlin, Heidelberg, New York.

    Google Scholar 

  • Molnär, P. (1996a). A microsimulation tool for social force models & pedestrian dynamics. In: Social Science Microsimulation ( K.G. Troitzsch, U. Mueller, G.N. Gilbert and J.E. Doran, Eds.). Springer-Verlag. Berlin, Heidelberg, New York. pp. 155–170.

    Google Scholar 

  • Molnär, P. (19966). Modellierung und Simulation der Dynamik von Fußgänger-Strömen. PhD thesis. Universität Stuttgart. Verlag Shaker, Aachen.

    Google Scholar 

  • Müller, B. and J. Reinhardt (1991). Neural Networks — An Introduction. Springer-Verlag. Berlin, Heidelberg, New York.

    Google Scholar 

  • Papadimitriou, C. and K. Steiglilz (1982). Combinatorial Optimization — Algorithms and Complexity. Prentice-Hall. Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Starke, J. (1996). Cost oriented competing processes — a new handling of assignment problems. In: System Modelling and Optimization (J. Dolezal and J. Fidler, Eds.), pp. 551 — 558. Chapman & Hall. London Glasgow.

    Google Scholar 

  • Starke, J. (1997). Kombinatorische Optimierung auf der Basis gekoppelter Selektionsgleichungen. PhD thesis. Universität Stuttgart. Verlag Shaker, Aachen.

    Google Scholar 

  • Starke, J., N. Kubota and T. Fukuda (1995). Combinatorial optimization with higher order neural networks — cost oriented competing processes in flexible manufacturing systems. In: Proceedings of the International Conference on Neural Networks (ICNN’95). Vol. 5. IEEE. pp. 2658 — 2663.

    Google Scholar 

  • Vanderbauwhede, A. (1989). Center manifolds, normal forms and elementary bifurcations. In: Dynamics Reported (U. Kirchgraber and H. O. Walther, Eds.). Vol. 2. Chap. 4, pp. 89–170. Teubner/John Wiley & Sons. Stuttgart/Chichester, New York, Brisbane.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Starke, J., Schanz, M., Haken, H. (1998). Self-Organized Behaviour of Distributed Autonomous Mobile Robotic Systems by Pattern Formation Principles. In: Distributed Autonomous Robotic Systems 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72198-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72198-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72200-4

  • Online ISBN: 978-3-642-72198-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics