Skip to main content

Metabolism of Insecticides by Microorganisms

  • Chapter
Insecticide Microbiology

Abstract

During the past 40 years the use of agrochemicals including pesticides1 has contributed to a significant increase in major crop production. According to an EPA report prepared by Lawless et al. (1975), there are at least 550 different pesticide chemicals commercially available in the United States alone. Moreover, about 8000 different pesticide “formulations” are sold on the market and over 500 of these products contain two or more “active ingredients”. Pesticide usage over recent years has also increased dramatically, from 1.1 × 109 lb yr−1 in 1971 to 1.5 × 109 lbs at the end of the decade (Storck 1980). A recent prediction shows that the worldwide expenditure on pesticides will steadily increase from U.S. $ 11.5 billion in 1980 to $ 14.3 billion in 1985. The United States alone will be spending nearly $ 4.5 billion on pesticides by the year 1985 (Farm Chemicals 1981). Thus our environment will remain under continuous pressure from the intensive applications of massive quantities of these toxic chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adhya TK, Barik S, Sethunathan N (1981a) Hydrolysis of selected organophosphorus insecticides by two bacteria isolated from flooded soil. J Appl Bacteriol 50:167–172

    CAS  Google Scholar 

  • Adhya TK, Barik S, Sethunathan N (1981b) Stability of commercial formulation of fenitrothion, methyl parathion, and parathion in anaerobic soils. J Agric Food Chem 29: 90–93

    CAS  Google Scholar 

  • Ahmed MK, Casida JE (1958) Metabolism of some organophosphorus insecticides by microorganisms. J Econ Entomol 51: 59–63

    CAS  Google Scholar 

  • Albone ES, Eglinton G, Evans NC, Hunter JM, Rhead MM (1972 a) Fate of DDT in severn estuary sediments. Environ Sci Technol 6:914–918

    CAS  Google Scholar 

  • Albone ES, Eglinton G, Evans NC, Rhead MM (1972 b) Formation of bis-(p-chlorophenyl) acetonitrile (p,p′-DDCN) from p,p′-DDT in anaerobic sewage sludge. Nature (London) 240:420–421

    CAS  Google Scholar 

  • Alexander M (1969) Microbial degradation and biological effects of pesticides in soil. In: Soil Biol. Reviews of research, UNESCO, Paris, pp 209–240

    Google Scholar 

  • Alexander M (1973) Microbial formation and degradation of pollutants in soil. In: Jord-och Skogsbrukets Ansvar vid Aufallets Utnyttjande och Cirkulation. Nordiske Jordbruksforskeres, Forening, pp 20–48

    Google Scholar 

  • Alexander M (1974) Microbial formation of environmental pollutants. Adv Appl Microbiol 18: 1–73

    PubMed  CAS  Google Scholar 

  • Alexander M (1980) Microbial metabolism of chemicals of environmental concern. Am Soc Microbiol News 46: 35–38

    Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–138

    PubMed  CAS  Google Scholar 

  • Alexander M, Lustigman BK (1966) Effect of chemical structure on microbial degradation of substituted benzenes. J Agric Food Chem 14: 410–413

    CAS  Google Scholar 

  • Andersen DW, Castle WT, Woods LA Jr, Ayres LA (1982) Residues of o,p′-DDT in southern California coastal sediments in 1971. Bull Environ Contam Toxicol 29: 429–433

    Google Scholar 

  • Anderson JP, Lichtenstein EP, Whittingham WF (1970) Effect of Mucor altemans on the persistence of DDT and dieldrin in culture and in soil. J Econ Entomol 63: 1595–1599

    PubMed  CAS  Google Scholar 

  • Barik S, Munnecke DM (1982) Enzymatic hydrolysis of concentrated diazinon in soil. Bull Environ Contam Toxicol 29: 235–239

    PubMed  CAS  Google Scholar 

  • Barik S, Sethunathan N (1978a) Biological hydrolysis of parathion in natural ecosystems. J Environ Qual 7: 346–348

    CAS  Google Scholar 

  • Barik S, Sethunathan N (1978 b) Metabolism of nitrophenols in flooded soils. J Environ Qual 7:349–352

    CAS  Google Scholar 

  • Barik S, Sethunathan N (1979) Increased stability of parathion in flooded soil amended with benomyl. Prog Water Technol 11: 113–119

    Google Scholar 

  • Barik S, Siddaramappa R, Sethunathan N (1976) Metabolism of nitrophenols by bacteria isolated from parathion-amended flooded soil. Antonie van Leeuvenhoek J Microbiol Serol 42: 461–470

    Google Scholar 

  • Barik S, Wahid PA, Ramakrishna C, Sethunathan N (1979) A change in the degradation pathway of parathion after repeated applications to flooded soil. J Agric Food Chem 27: 1391–1392

    Google Scholar 

  • Barik S, Munnecke DM, Fletcher JS (1982) Enzymatic hydrolysis of malathion and other dithioate pesticides. Biotech Lett 4: 795–798

    CAS  Google Scholar 

  • Barik S, Munnecke, DM, Fletcher JS (1984) Bacterial degradation of dithioate pesticides. Agril Wastes 10: 81–94

    CAS  Google Scholar 

  • Barker PS, Morrison FO, Whittaker RS (1965) Conversion of DDT to DDD by Proteus vulgaris, a bacterium isolated from the intestinal flora of a mouse. Nature (London) 205: 621–622

    CAS  Google Scholar 

  • Bjerk JE, Brevik EM (1980) Organochlorine compounds in aquatic environments. Arch Environ Contam Toxicol 9: 743–750

    PubMed  CAS  Google Scholar 

  • Bollag JM (1974) Microbial transformation of pesticides. Adv Appl Microbiol 18: 75–130

    PubMed  CAS  Google Scholar 

  • Bollag JM (1982) Microbial metabolism of pesticides. In: Rosaza RP (ed) Microbial transformations of bioactive compounds. CRC Press, Boca Raton, Fla, pp 125–168

    Google Scholar 

  • Bollag JM, Liu SY (1971) Degradation of sevin by soil microorganisms. Soil Biol Biochem 3: 337–345

    CAS  Google Scholar 

  • Bollag JM, Liu SY (1972a) Hydroxylations of carbaryl by soil fungi. Nature (London) 236: 177–178

    CAS  Google Scholar 

  • Bollag JM, Liu SY (1972b) Fungal degradation of l-naphthol. Can J Microbiol 18: 1113–1117

    CAS  Google Scholar 

  • Bollag JM, Sjoblad RD, Czaplicki EJ, Hoeppel RE (1976) Transformation of l-naphthol by the culture filtrate of Rhizoctonia praticola. Soil Biol Biochem 8: 7–11

    CAS  Google Scholar 

  • Bourquin AW (1977) Degradation of malathion by salt-marsh microorganisms. Appl Environ Microbiol 33: 356–362

    PubMed  CAS  Google Scholar 

  • Bourquin AW, Hood MA, Garnas RL (1977) An artificial microbial ecosystem for determining effects and fate of toxicants in a salt-marsh environment. Dev Ind Microbiol 18: 185–191

    Google Scholar 

  • Boush GM, Batterton JC (1972) Ecological aspects of pesticide microbial relationship. In: Matsumura F, Boush GM, Misato T (eds) Environmental toxicology of pesticides. Academic Press, London New York, pp 401–422

    Google Scholar 

  • Boush GM, Matsumura F (1967) Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J Econ Entomol 60: 918–920

    CAS  Google Scholar 

  • Brown KA (1980) Phosphotriesterase of Flavobacterium sp. Soil Biol Biochem 12: 105–112

    CAS  Google Scholar 

  • Burge WD (1971) Anaerobic decomposition of DDT in soil-acceleration by volatile components of alfalfa. J Agric Food Chem 19: 375–378

    PubMed  CAS  Google Scholar 

  • Burkhardt CC, Fairchild ML (1967) Bioassay of field treated soils to determine bioactivity and movement of insecticides. J Econ Entomol 60: 1602–1610

    CAS  Google Scholar 

  • Burns RG (1971) The loss of phosdrin and phorate insecticides from a range of soil types. Bull Environ Contam Toxicol 6: 316–321

    PubMed  CAS  Google Scholar 

  • Cain RB (1958) The microbial metabolism of nitroaromatic compounds. J Gen Microbiol 19: 1–14

    PubMed  CAS  Google Scholar 

  • Cain RB (1966) Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and ¬bacterium sp. J Gen Microbiol 42: 219–236

    PubMed  CAS  Google Scholar 

  • Caro JH, Freeman HP, Turner BC (1974) Persistence in soil and losses in run-off of soil-incorporated carbaryl in a small water shed. J Agric Food Chem 22: 860–863

    PubMed  CAS  Google Scholar 

  • Cartwright NJ, Cain RB (1959) Bacterial degradation of nitrobenzoic acids. Biochem J 71: 248–261

    PubMed  CAS  Google Scholar 

  • Castro TF, Yoshida T (1971) Degradation of organochlorine insecticides in flooded soils in the Philippines. J Agric Food Chem 19: 1168–1170

    PubMed  CAS  Google Scholar 

  • Chacko CL, Lockwood JL, Zabik M (1966) Chlorinated hydrocarbon pesticides: degradation by microbes. Science 154: 893–895

    CAS  Google Scholar 

  • Chakrabarty AM (1982) Genetic mechanism in the dissimilation of chlorinated compounds. In: Chakrabarty AM (ed) Biodegradation and detoxification of environmental pollutants. CRC Press, Boca Raton, Fla, pp 127–139

    Google Scholar 

  • Chapman RA, Harris CR (1980) Persistence of chlorpyrifos in a mineral and an organic soil. J Environ Sci Health B15: 39–46

    CAS  Google Scholar 

  • Chatterjee DK, Chakrabarty AM (1983) Genetic homology between independently isolated chlorobenzoate-degradative plasmids. J Bacteriol 153: 532–534

    PubMed  CAS  Google Scholar 

  • Chen PR, Tucker WP, Dauterman WC (1969) Structure of biologically produced malathion monoacid. J Agric Food Chem 17: 86–90

    CAS  Google Scholar 

  • Chisholm D, MacPhee AW (1972) Persistence and effects of some pesticides in soil. J Econ Entomol 65: 1010–1013

    PubMed  CAS  Google Scholar 

  • Chou TW, Bohonos NC (1979) Diauxic and cometabolic phenomena in biodégradation evaluations. In: Bourquin AW, Pritchard PH (eds) Microbial degradation of pollutants in marine environments. Environ Res Lab, Gulf Breeze, Fla, pp 76–88

    Google Scholar 

  • Cook AM, Daughton CG, Alexander M (1978a) Phosphonate utilization by bacteria. J Bacteriol 133: 85–90

    PubMed  CAS  Google Scholar 

  • Cook AM Daughton CG, Alexander M (1979) Benzene from bacterial cleavage of carbon-phosphorus bond of phenylphosphonates. Biochem J 184: 453–455

    PubMed  CAS  Google Scholar 

  • Cook AM, Daughton CG, Alexander M (1980) Disulfuration of dialkyl thiophosphoric acids by a Pseudomonad. Appl Environ Microbiol 39: 463–465

    PubMed  CAS  Google Scholar 

  • Dagley S (1977) Microbial degradation of organic compounds in the biosphere. Surv Prog Chem 2: 121–170

    Google Scholar 

  • Dagley S (1978) Microbial catabolism, the carbon cycle and environmental pollution. Naturwissenschaften 65: 85–95

    PubMed  CAS  Google Scholar 

  • Daorai A, Menzer RE (1977) Behavior of Abate in microorganisms isolated from polluted water. Arch Environ Contam Toxicol 5: 229–240

    PubMed  CAS  Google Scholar 

  • Daughton CG, Hsieh DPH (1977) Accelerated parathion degradation in soil by inoculation with parathion-utilizing bacteria. Bull Environ Contam Toxicol 18: 48–56

    PubMed  CAS  Google Scholar 

  • Daughton CG, Cook AM, Alexander M (1979 a) Bacterial conversion of alkylphosphonates to natural products via carbon-phosphorus bond cleavage. J Agric Food Chem 27:1375–1382

    CAS  Google Scholar 

  • Daughton CG, Cook AM, Alexander M (1979 b) Biodegradation of phosphonate toxicants yields methane or ethane in cleavage of the C-P Bond. FEMS Microbiol Lett 5:91–93

    CAS  Google Scholar 

  • Davis JE, Staiff DC, Butler LC, Armstrong JF (1977) Persistence of methyl and ethyl parathion following spillage on concrete surfaces. Bull Environ Contam Toxicol 18: 18–25

    PubMed  CAS  Google Scholar 

  • Deo PG, Alexander M (1976) Ring hydroxylation of p-chlorophenyl acetate by an Arthrobacter strain. Appl Environ Microbiol 32: 195–196

    PubMed  CAS  Google Scholar 

  • DiGeronimo MJ, Boethling RS, Alexander M (1979) Effect of chemical structure and concentration on microbial degradation in model ecosystems. In: Bourquin AL, Pritchard PH (eds) Microbial degradation of pollutants in marine environments. Environ Res Lab, Gulf Breeze, Fla, pp 154–166

    Google Scholar 

  • Durham NN (1958) Studies on the metabolism of p-nitrobenzoic acid. Can J Microbiol 4: 141–148

    PubMed  CAS  Google Scholar 

  • Edwards CA (ed) (1973) Pesticide residues in soil and water. In: Environmental pollution by pesticides. Plenum Press, New York, pp 409–458

    Google Scholar 

  • Eichelberger JW, Lichtenberg JJ (1971) Persistence of pesticides in river water. Environ Sci Technol 5: 541–544

    CAS  Google Scholar 

  • Engelhardt G, Ziegler W, Wallnofer PR, Oehlmann L, Wagner K (1981) Degradation of azinophosmethyl by Pseudomonas fluorescens DSM 1976. FEMS Microbiol Lett 11: 165–169

    CAS  Google Scholar 

  • Erikson D (1941) Studies on some lake-mud strains of Micromonospora. J. Bacteriol 41: 277–300

    PubMed  CAS  Google Scholar 

  • Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London) 270: 17–22

    CAS  Google Scholar 

  • Farm Chemicals (1981) A look at world pesticide markets. Farm Chem 144: 55–60

    Google Scholar 

  • Farmer WJ, Spencer WF, Sheperd RA, Cliath MM (1974) Effect of flooding and organic matter applications on DDT residues in soil. J Environ Qual 3: 343–346

    CAS  Google Scholar 

  • Felsot A, Maddox JV, Bruce W (1981) Enhanced microbial degradation of carbofuran in soil with histories of furadan use. Bull Environ Contam Toxicol 26: 781–788

    PubMed  CAS  Google Scholar 

  • Ferris IG, Lichtenstein EP (1980) Interactions between agricultural chemicals and soil microflora and their effects on the degradation of 14C parathion in a cranberry soil. J Agric Food Chem 28: 1011–1019

    PubMed  CAS  Google Scholar 

  • Fischer HF, Munnecke DM, Domsch KH (1980) Final Report. Mikrobielle bzw. Enzymatische Spaltung von Parathion. BMFT-FB-T 80-046, Bonn. 54

    Google Scholar 

  • Fisher PR, Appleton J, Pemberton JM (1978) Isolation and characterization of pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. J Bacteriol 135: 798–804

    PubMed  CAS  Google Scholar 

  • Fleming WE, Maines WW (1953) Persistence of DDT in the soils of the area infested by the Japanese beetle. J Econ Entomol 46: 445–449

    CAS  Google Scholar 

  • Focht DD, Alexander M (1970) DDT metabolites and analogs: ring fission by Hydrogenomonas. Science 170: 91–92

    PubMed  CAS  Google Scholar 

  • Focht DD, Alexander M (1971) Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J Agric Food Chem 19: 20–22

    PubMed  CAS  Google Scholar 

  • Focht DD, Joseph H (1974) Degradation of 1,1-diphenylethylene by mixed cultures. Can J Microbiol 20: 631–635

    PubMed  CAS  Google Scholar 

  • Francis AJ, Spanggord RJ, Ouchi GI, Bramhall R, Bohonos N (1976) Metabolism of DDT analogues by a Pseudomonas sp. Appl Environ Microbiol 32: 213–216

    PubMed  CAS  Google Scholar 

  • Francis AJ, Spanggord RJ, Ouchi GI, Bohonos N (1978) Cometabolism of DDT analogs by Pseudomonas sp. Appl Environ Microbiol 35: 364–367

    PubMed  CAS  Google Scholar 

  • Fukuto TR (1983) Toxicological properties of trialkyl phosphorothioate and dialkyl alkyl- andaryl phosphonothioate esters. J Environ Sci Health B18:89–117

    CAS  Google Scholar 

  • Germanier R, Wuhrman K (1963) Über den aeroben mikrobiellen Abbau aromatischer Nitroverbindungen. Path et Microbiol 26: 569–578

    CAS  Google Scholar 

  • Getzin LW (1967) Metabolism of diazinon and zinophos in soils. J Econ Entomol 60: 505–508

    CAS  Google Scholar 

  • Getzin LW(1968) Persistence of diazinon and zinophos in soil: effects of autoclaving, temperature, moisture and acidity. J Econ Entomol 61:1560–1565

    PubMed  CAS  Google Scholar 

  • Getzin LW (1973) Persistence and degradation of carbofuran in soil. Environ Entomol 2: 461–467

    CAS  Google Scholar 

  • Getzin LW, Rosefield I (1968) Organophosphorus insecticide degradation by heat labile substances in soil. J Agric Food Chem 16: 598–601

    CAS  Google Scholar 

  • Glass BL (1972) Relation between the degradation of DDT and iron redox system in soils. J Agric Food Chem 20: 324–327

    PubMed  CAS  Google Scholar 

  • Gomma HM, Faust SD (1972) Chemical hydrolysis and oxidation of parathion and paraoxon in aquatic environments. Fate of organic pesticides in the aquatic environment. Adv Chem Ser 111: 189–209

    Google Scholar 

  • Gracia-Acha I, Villanueva JR (1962) Utilization del acido p-nitrobenzioco por Nocardia V como fuente unica de carbono Y nitrogeno. Microbiol Esp 15: 165–169

    Google Scholar 

  • Graetz DA, Chesters G, Daniel TC, Newland LW, Lee GB (1970) Parathion degradation in lake sediments. J Water Pollut Control Fed 42: R76–R94

    PubMed  Google Scholar 

  • Greenhalgh R, Dhawan KL, Weinberger P (1980) Hydrolysis of fenitrothion in model and natural aquatic ecosystems. J Agric Food Chem 28: 102–105

    CAS  Google Scholar 

  • Griffiths DC, Walker N (1970) Microbial degradation of parathion. Meded Rijksfac Land-bauwwet Gent 35: 805–810

    CAS  Google Scholar 

  • Guenzi WD, Beard WE (1967) Anaerobic biodegradation of DDT to DDD in soil. Science 156: 1116–1117

    PubMed  CAS  Google Scholar 

  • Guenzi WD, Beard WE (1968) Anaerobic conversion of DDT to DDD and aerobic stability of DDT in soil. Soil Sci Soc Am Proc 32:522–524

    Google Scholar 

  • Gundersen K, Jensen HL (1956) A soil bacterium decomposing organic nitro compounds. Acta Agric Scand 6: 100–114

    CAS  Google Scholar 

  • Gunner HB, Zuckerman BM (1968) Degradation of diazinon by synergistic microbial action. Nature (London) 217: 1183–1184

    CAS  Google Scholar 

  • Gunther FA, Iwata Y, Carman GE, Smith CA (1977) The citrus reentry problem: Research on its causes and effects and approaches to its minimization. Residue Rev 67: 1–132

    PubMed  CAS  Google Scholar 

  • Halvorson H, Ishaque M, Solomon J, Grussendorf OW (1971) Biodegradability test for insecticides. Can J Microbiol 17: 585–591

    PubMed  CAS  Google Scholar 

  • Harris CR, Chapman RA, Miles JRW (1977) Insecticide residues in soils on fifteen farms in southwestern Ontario, 1964–1974. J Environ Sci Health B12: 163–177

    CAS  Google Scholar 

  • Helling CS, Kearney PC, Alexander M (1971) Behaviour of pesticides in soils. Adv Agron 23: 147–240

    CAS  Google Scholar 

  • Horvath RS (1972) Microbial cometabolism and the degradation of organic compounds in nature. Bacteriol Rev 36: 146–153

    PubMed  CAS  Google Scholar 

  • Howe RHL (1969) Toxic wastes degradation and disposal. Process Biochem 4: 3–7

    Google Scholar 

  • Hsieh DPH, Munnecke DM (1972) Accelerated microbial degradation of concentrated parathion. Proc Vth IFS: Ferment Technol Today, pp 551–554

    Google Scholar 

  • Hsu TS, Bartha R (1979) Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Appl Environ Microbiol 37: 36–41

    PubMed  CAS  Google Scholar 

  • Hubbell DH, Rothwell DF, Wheeler WB, Tappan WB, Rhoads FM (1973) Microbiological effects and persistence of some pesticide combinations in soil. J Environ Qual 2: 96–99

    CAS  Google Scholar 

  • Hughes DN, Boyer MG, Papst MH, Fowle CD, Ress GAV, Baulu P (1980) Persistence of three organophosphorus insecticides in artificial ponds and some biological implications. Arch Environ Contam Toxicol 9: 269–279

    PubMed  CAS  Google Scholar 

  • Hulbert MH, Kraweic S (1977) Cometabolism: a critique. J Theor Biol 69: 287–291

    PubMed  CAS  Google Scholar 

  • Iwata Y, Westlake WE, Gunther FA (1973) Persistence of parathion in six California soils under laboratory conditions. Arch Environ Contam Toxicol 1: 84–96

    PubMed  CAS  Google Scholar 

  • Iwata Y, Ittig M, Gunther FA (1977) Degradation of O,O-dimethyl S-α-(carboethoxy)-benzyl Phosphorodithioate ( Phenthoate) in soil. Arch Environ Contam Toxicol 6: 1–12

    PubMed  Google Scholar 

  • Jensen HL, Gundersen K (1955) Biological decomposition of aromatic nitrocompounds. Nature (London) 175: 341

    CAS  Google Scholar 

  • Jensen S, Goethe R, Kindstedt MO (1972) Bis-(p-chlorophenyl)-acetonitrile ( DDCN) a new DDT derivative in anaerobic digested sludge and lake sediment. Nature (London) 240: 421–422

    Google Scholar 

  • Johnsen RE (1976) DDT metabolism in microbial systems. Residue Rev 61: 1–28

    PubMed  CAS  Google Scholar 

  • Johnson LM, Hartman PA (1980) Microbiology of a pesticide disposal pit. Bull Environ Contam Toxicol 25: 448–455

    PubMed  CAS  Google Scholar 

  • Joiner RL, Chambers HW, Baetcke KP (1971) Toxicity of parathion and several of its photoalteration products to boll weevils. Bull Environ Contam Toxicol 6: 220–224

    PubMed  CAS  Google Scholar 

  • Juengst FW, Alexander M (1976) Conversion of l,l,l-trichloro-2,2-bis(p-chlorophenyl) ethane ( DDT) to water soluble products by microorganisms. J Agric Food Chem 24: 111–115

    PubMed  CAS  Google Scholar 

  • Kageyama ME, Rawlins WA, Getzin LW (1972) Loss of activity of diazinon for onion maggot control in marl-containing muck soil. J Econ Entomol 65: 873–874

    CAS  Google Scholar 

  • Kallman BJ, Andrews AK (1963) Reductive dechlorination of DDT to DDD by yeast. Science 141: 1050–1051

    PubMed  CAS  Google Scholar 

  • Kandaswamy D, Chendrayan K, Rajukkannu K, Balasubramanian M (1977) On the variations in the degradation of carbofuran by three soil fungi. Curr Sci 46: 280–281

    Google Scholar 

  • Katan J, Lichtenstein EP (1977) Mechanism of production of soil-bound residues of 14C-parathion by microorganisms. J Agric Food Chem 25: 1404–1408

    PubMed  CAS  Google Scholar 

  • Katan J, Lichtenstein EP (1977) Mechanism of production of soil-bound residues of 14C-parathion by microorganisms. J Agric Food Chem 25: 1404–1408

    Google Scholar 

  • Katan J, Fuhremann TW, Lichtenstein EP (1976) Binding of 14C-parathion in soil: A reassessment of pesticide persistence. Science 193: 891–894

    PubMed  CAS  Google Scholar 

  • Kaufman DD (1974) Degradation of pesticides by soil microorganisms. In: Guenzi WD (ed) Pesticides in soil and water. Soil Sci Soc Am, Madison, Wisconsin, pp 133–202

    Google Scholar 

  • Kaufman DD (1977) Biodegradation and persistence of several acetamide, acylanilide, azide, carbamate, and organophosphate pesticide combinations. Soil Biol Biochem 9: 49–57

    CAS  Google Scholar 

  • Kaufman DD, Kearney PC, Endt DW von, Miller DE (1970) Methylcarbamate inhibition of phenylcarbamate metabolism in soil. J Agric Food Chem 18: 513–519

    PubMed  CAS  Google Scholar 

  • Kearney PC, Helling CS (1969) Reactions of pesticides in soils. Residue Rev 25: 25–44

    PubMed  CAS  Google Scholar 

  • Kearney PC, Kaufman DD (1972) Microbial degradation of some chlorinated pesticides. In: Degradation of synthetic organic molecules in the biosphere. Natl Acad Sci Proc, San Francisco, Calif, pp 166–189

    Google Scholar 

  • Kearney PC, Plimmer JR, Helling CS (1969) Soil chemistry of pesticides. Encycl Chem Technol 18: 515–540

    CAS  Google Scholar 

  • Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214: 1133–1135

    PubMed  CAS  Google Scholar 

  • Kenega EE (1974) Partitioning and uptake of pesticides in biological systems. In: Haque R, Freed VH (eds) Environmental dynamics of pesticides. Plenum Press, New York, pp 217–273

    Google Scholar 

  • Kimber RWL (1980) An evaluation of the persistence in soil of two non-chlorinated insecticides analogous to DDT. Pestic Sci 11: 533–545

    CAS  Google Scholar 

  • Kishk FM, EI-Essawi T, Abel-Ghafar S, Abou-Donia MB (1976) Hydrolysis of methyl parathion in soils. J Agric Food Chem 24: 305–307

    PubMed  CAS  Google Scholar 

  • Ko WH, Lockwood JL (1968) Conversion of DDT to DDD in soil and the effect of these compounds on soil microorganisms. Can J Microbiol 14: 1069–1073

    PubMed  CAS  Google Scholar 

  • Konrad JG, Chesters G, Armstrong DE (1969) Soil degradation of malathion, a phosphorodithioate insecticide. Soil Sci Soc Am Proc 33: 259–262

    CAS  Google Scholar 

  • Kuhr RJ, Davis AC, Taschenberg EF (1972) DDT residues in a vineyard soil after 24 years of exposure. Bull Environ Contam Toxicol 8: 329–333

    PubMed  CAS  Google Scholar 

  • Kveseth NJ (1981) Residues of DDT in a contaminated Norwegian lake ecosystem. Bull Environ Contam Toxicol 27: 397–405

    PubMed  CAS  Google Scholar 

  • Lal R, Saxena DM (1982) Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbiol Rev 46: 95–127

    PubMed  CAS  Google Scholar 

  • Langlois BE (1967) Reductive dechlorination of DDT by Escherichia coli. J Dairy Sci 50: 1168–1170

    PubMed  CAS  Google Scholar 

  • Lawless EW, Ferguson TL, Meiners AF (1974) Methods for disposal of spilled and unused pesticides. Hazardous Waste Spill Conf, San Francisco, pp 329–335

    Google Scholar 

  • Lawless EW, Ferguson IL, Meiners AF (1975) Guidelines for the disposal of small quantities of unused pesticides. EPA Rep-670, pp 330

    Google Scholar 

  • Lewis DL, Holm HW (1981) Rates of transformation of methyl parathion and diethyl phthalate by aufwuchs microorganisms. Appl Environ Microbiol 42: 698–703

    PubMed  CAS  Google Scholar 

  • Lewis DL, Paris DF, Baugham GL (1975) Transformation of malathion by a fungus, Aspergillus oryzae, isolated from a freshwater pond. Bull Environ Contam Toxicol 13: 596–601

    PubMed  CAS  Google Scholar 

  • Liang TT, Lichtenstein EP (1972) Effect of light, temperature, and pH on the degradation of azinophosmethyl. J Econ Entomol 65: 315–321

    PubMed  CAS  Google Scholar 

  • Liang TT, Lichtenstein EP (1974) Synergism of insecticides by herbicides: Effect of environmental factors. Science 186: 1128–1130

    Google Scholar 

  • Lichtenstein EP (1981) “Bound” residues in soils and transfer of soil residues in crops. Residue Rev 76:147–153

    Google Scholar 

  • Lichtenstein EP, Schulz KR (1964) The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils, with special emphasis on parathion. J Econ Entomol 57: 618–627

    CAS  Google Scholar 

  • Lichtenstein EP, Fuhremann TW, Schulz KR (1968) Effect of sterilizing agents on persistence of parathion and diazinon in soil and water. J Agric Food Chem 16: 870–873

    CAS  Google Scholar 

  • Lichtenstein EP, Liang TT, Anderegg BN (1973) Synergism of insecticides by herbicides. Science 181: 847–849

    PubMed  CAS  Google Scholar 

  • Lichtenstein EP, Liang TT, Koeppe MK (1982) Effects of fertilizers, captafol, and atrazine on the fate and translocation of 14C-fonofos and 14C-parathion in a soil-plant microcosm. J Agric Food Chem 30: 871–878

    CAS  Google Scholar 

  • Lieberman MT, Alexander M (1983) Microbial and nonenzymatic steps in the decomposition of dichlorvos (2,2-dichlorovinyl O,O-dimethyl phosphate). J Agric Food chem 31: 265–267

    CAS  Google Scholar 

  • Liu D, Thompson K, Strachan WMJ (1981) Biodegradation of carbaryl in simulated aquatic environment. Bull Environ Contam Toxicol 27: 412–417

    PubMed  CAS  Google Scholar 

  • Liu SY, Bollag JM (1971) Metabolism of carbaryl by a soil fungus. J Agric Food Chem 19: 487–490

    Google Scholar 

  • Mackiewicz M, Deubert KH, Gunner HB, Zuckerman BM (1969) Study of parathion biodegradation using gnotobiotic techniques. J Agric Food Chem 17: 129–130

    CAS  Google Scholar 

  • MacPhee AW, Chisholm D, MacEachern CR (1960) The persistence of certain pesticides in the soil and their effect on crop yields. Can J Soil Sci 40: 59–62

    CAS  Google Scholar 

  • Madhosingh C (1960) The metabolic detoxification of 2,4-dinitrophenol by Fusarium oxysporum. Can J Microbiol 7: 553–567

    Google Scholar 

  • Maguire RJ, Hale EJ (1980) Fenitrothion sprayer on a pond: Kinetics of its distribution and transformation in water and sediment. J Agric Food Chem 28: 372–378

    Google Scholar 

  • Maleszewska J (1974) Degradation of methyl parathion by microorganisms occurring in surface water and sewage. Pol Arch Hydrobiol 21: 163–171

    CAS  Google Scholar 

  • Matsumura F (1973) Degradation of pesticide residues in the environment. In: Edwards CA (ed) Environmental pollution by pesticides. Plenum Press, New York, pp 494–513

    Google Scholar 

  • Matsumura F, Boush GM (1966) Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153: 1278–1280

    PubMed  CAS  Google Scholar 

  • Matsumura F, Boush GM (1968) Degradation of insecticides by a soil fungus, Trichoderma viride. J Econ Entomol 61: 610–612

    PubMed  CAS  Google Scholar 

  • McIntyre AE, Lester JN, Perry R (1981) Persistence of organophosphorus insecticides in sewage sludges. Environ Technol Lett 2: 111–118

    CAS  Google Scholar 

  • Menzie CM (1978) Metabolism of pesticides: update II. US Fish Wild Life Serv, Spec Sci Rep no 212

    Google Scholar 

  • Merkel GJ, Perry JJ (1977) Increased cooxidative biodegradation of malathion in soil via cosubstrate enrichment. J Agric Food Chem 25: 1011–1012

    PubMed  CAS  Google Scholar 

  • Metcalf RL (1974) A laboratory model ecosystem to evaluate compounds producing biological magnification. In: Hayes WJ (ed) Essays in toxicology, vol V. Academic Press, London New York, pp 17–38

    Google Scholar 

  • Metcalf KL, Sangha GK, Kapoor IP (1971) Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ Sci Technol 5: 709–713

    CAS  Google Scholar 

  • Miles JRW, Harris CR (1978) Insecticide residues in organic soils of six vegetable growing areas in southwestern Ontario, 1976. J Environ Sci Health B13: 199–209

    Google Scholar 

  • Miles JRW, Tu CM, Harris CR (1979) Persistence of eight organophosphorus insecticides in sterile and non-sterile mineral and organic soils. Bull Environ Contam Toxicol 22: 312–318

    PubMed  CAS  Google Scholar 

  • Miles JRW, Tu CM, Harris CR (1981) A laboratory study of the persistence of carbofuran and its 3-hydroxy- and 3-ketometabolites in sterile and natural mineral and organic soils. J Environ Sci Health B16: 409–417

    CAS  Google Scholar 

  • Miyamoto J, Kitagawa K, Sato Y (1966) Metabolism of organophosphorus insecticides by Bacillus subtilis, with special emphasis on sumithion. Jpn J Exp Med 36: 211–225

    PubMed  CAS  Google Scholar 

  • Moody RP, Greenhalgh R, Lockhart L, Weinberger P (1978) The fate of fenitrothion in an aquatic ecosystem. Bull Environ Contam Toxicol 20: 8–14

    Google Scholar 

  • Mostafa IY, Bahig MRE, Fakhr IMI, Adam Y (1972a) Malathion breakdown by soil fungi. Z Naturforsch 27b: 1115–1116

    CAS  Google Scholar 

  • Mostafa IY, Fakhr IMI, Bahig MRE, El-Zawahry YA (1972b) Metabolism of organophosphorus insecticides, XIII. Degradation of malathion by Rhizobium spp. Arch. Mikrobiol 86: 221–224

    Google Scholar 

  • Mountfort DO, Bryant MP (1982) Isolation and characterization of a syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133: 249–256

    CAS  Google Scholar 

  • Munnecke DM (1976) Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32: 7–13

    PubMed  CAS  Google Scholar 

  • Munnecke DM (1977) Properties of an immobilized pesticide-hydrolyzing enzyme. Appl Environ Microbiol 33: 503–507

    PubMed  CAS  Google Scholar 

  • Munnecke DM (1978) Detoxification of pesticides using soluble or immobilized enzymes. Process Biochem 13: 16–19

    Google Scholar 

  • Munnecke DM (1979a) Chemical, physical, and biological methods for the disposal and detoxification of pesticides. Residue Rev 70: 1–26

    PubMed  CAS  Google Scholar 

  • Munnecke DM (1979 b) Hydrolysis of organophosphate insecticides by an immobilized enzyme system. Biotechnol Bioeng 21:2247–2261

    CAS  Google Scholar 

  • Munnecke DM (1980) Enzymatic detoxification of waste organophosphate pesticides. J Agric Food Chem 28: 105–111

    CAS  Google Scholar 

  • Munnecke DM, Hsieh DPH (1974) Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol 28: 212–217

    PubMed  CAS  Google Scholar 

  • Munnecke DM, Hsieh DPH (1976) Pathways of microbial metabolism of parathion. Appl Environ Microbiol 31: 63–69

    PubMed  CAS  Google Scholar 

  • Munnecke DM, Johnson LM, Talbot HW, Bank S (1982) Microbial metabolism and enzymology of selected pesticides. In: Chakrabarty AM (ed) Biodegradation and detoxification of environmental pollutants. CRC Press, Boca Raton, Fla, pp 1–32

    Google Scholar 

  • Nash RG, Harris CR (1973) Chlorinated hydrocarbon insecticide residues in crops and soils. J Environ Qual 2: 269–273

    CAS  Google Scholar 

  • Nash RG, Woolson EA (1967) Persistence of chlorinated hydrocarbon insecticides in soils. Science 157: 924–927

    PubMed  CAS  Google Scholar 

  • National Academy of Sciences USA Report (1972) Degradation of synthetic organic molecules in the biosphere — natural, pesticidal and various other man-made compounds. Proc Conf San Francisco, Calif, June 12–13, 1971. Natl Acad Sci, Washington, DC, pp 350

    Google Scholar 

  • Nauman K (1970a) Dynamics of soil microflora following application of insecticides. I. Field trials on the effect of methyl parathion on the bacterial and actinomycetes population of soil. Zentbl Bakteriol Parasitenkde Infektionskr Hyg Abt II 124: 743–754

    Google Scholar 

  • Nauman K (1970b) Dynamics of the soil microflora following application of insecticides. II Reaction of soil bacteria belonging to different physiological groups to field applications of methyl parathion. Zentbl Bakteriol Parasitenkde Infektionskr Hyg Abt II 124: 755–765

    Google Scholar 

  • Nelson LM (1982) Biologically-induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria. Soil Biol Biochem 14: 219–222

    CAS  Google Scholar 

  • Nelson LM, Yaron B, Nye PH (1982) Biologically-induced hydrolysis of parathion in soil: kinetics and modelling. Soil Biol Biochem 14: 223–227

    CAS  Google Scholar 

  • Osman MA, Belal MH (1980) Persistence of carbaryl in canal water. J Environ Sci Health B15: 307–311

    CAS  Google Scholar 

  • Ou LT, Gancarz DH, Wheeler WB, Rao PSC, Davidson JM (1982) Influence of soil temperature and soil moisture on degradation and metabolism of carbofuran in soils. J Environ Qual 11: 293–298

    CAS  Google Scholar 

  • Ou LT, Rao PSC, Davidson JM (1983) Methyl parathion degradation in soil-influence of soil-water tension. Soil Biol Biochem 15: 211–215

    CAS  Google Scholar 

  • Paris DF, Lewis DL (1973) Chemical and microbial degradation of ten selected pesticides in aquatic systems. Residue Rev 45: 95–124

    PubMed  CAS  Google Scholar 

  • Parr JF, Smith S (1974) Degradation of DDT in an everglades muck as affected by lime, ferrous iron and anaerobiosis. Soil Sci 118: 45–52

    CAS  Google Scholar 

  • Parr JF, Willis GH, Smith S (1970) Soil anaerobiosis: II. Effect of selected environments and energy sources on the degradation of DDT. Soil Sci 110: 306–312

    Google Scholar 

  • Paschal DC, Neville ME (1976) Chemical and microbial degradation of malaoxon in an Illinois soil. J Environ Qual 5: 441–443

    CAS  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin and DDT by soil microorganisms. Appl Microbiol 19: 879–881

    PubMed  CAS  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1972) Metabolic transformation of DDT, dieldrin, aldrin, and endrin by marine microorganisms. Environ Sci Technol 6: 629–632

    CAS  Google Scholar 

  • Pemberton JM (1979) Pesticide degrading plasmids: A biological answer to environmental pollution by phenoxyacetates. ABIO 8: 202–205

    CAS  Google Scholar 

  • Pfaender FK, Alexander M (1972) Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J Agric Food Chem 20: 842–846

    PubMed  CAS  Google Scholar 

  • Pfister RM (1972) Interaction of halogenated pesticides and microorganisms, A review. Crit Rev Microbiol 2: 1–33

    CAS  Google Scholar 

  • Plimmer JR, Kearney PC, Endt DW von (1968) Mechanism of conversion of DDT to DDD by Aerobacter aerogenes. J Agric Food Chem 16: 594–597

    CAS  Google Scholar 

  • Pritchard PH, Bourquin AW, Frederickson HL, Maziarz T(1979) System design factors affecting environmental fate studies in microcosms. In: Bourquin AW, Pritchard PH (eds) Microbial degradation of pollutants in marine environments. Environ Res Lab, Gulf Breeze, Fla, pp 251–272

    Google Scholar 

  • Rajaram KP, Rao YR, Sethunathan N (1978) Inhibition of biological hydrolysis of parathion in rice straw-amended flooded soil and its reversal by nitrogen compounds and aerobic conditions. Pestic Sci 9: 115–160

    Google Scholar 

  • Rao AV, Sethunathan N (1974) Degradation of parathion by Penicillium waksmanii Zaleski isolated from flooded acid sulfate soil. Arch Microbiol 97: 203–208

    PubMed  CAS  Google Scholar 

  • Raymond DGM, Alexander M (1971) Microbial metabolism and cometabolism of nitrophenols. Pestic Biochem Physiol 1: 123–130

    CAS  Google Scholar 

  • Reddy BR, Sethunathan N (1983) Mineralization of parathion in the rice rhizosphere. Appl Environ Microbiol 45: 826–829

    PubMed  CAS  Google Scholar 

  • Rodriguez LD, Dorough HW (1977) Degradation of carbaryl by soil microorganisms. Arch Environ Contam Toxicol 6: 47–56

    PubMed  CAS  Google Scholar 

  • Rosales MT, Escalona RL (1983) Organochlorine residues in organisms of two different lagoons of Northwest Mexico. Bull Environ Contam Toxicol 30: 456–463

    PubMed  CAS  Google Scholar 

  • Rosario DA del, Yoshida T (1976) BHC and DDT residues of some rice crops and soils in the Philippines. Soil Sci Plant Nutr (Tokyo) 22: 81–87

    Google Scholar 

  • Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37: 886–891

    PubMed  CAS  Google Scholar 

  • Sacher RM, Ludvik GF, Deming JM (1972) Bioactivity and persistence of some parathion formulations in soil. J Econ Entomol 65: 329–332

    PubMed  CAS  Google Scholar 

  • Salonius PO (1972) Effect of DDT and fenitrothion on forest-soil microflora. J Econ Entomol 65: 1089–1090

    CAS  Google Scholar 

  • Seiber JN, Catahan MP, Barril CR (1978) Loss of carbofuran from rice paddy water: chemical and physical factors. J Environ Sci Health B13: 131–148

    CAS  Google Scholar 

  • Sethunathan N (1972) Diazinon degradation in submerged soil and rice-paddy water. In: Fate of organic pesticides in aquatic environments. Adv Chem Ser 111: 244–255

    Google Scholar 

  • Sethunathan N (1973) Degradation of parathion in flooded acid soils. J Agric Food Chem 21: 602–604

    PubMed  CAS  Google Scholar 

  • Sethunathan N, MacRae IC (1969) Persistence and biodegradation of diazinon in submerged soils. J Agric Food Chem 17: 221–225

    CAS  Google Scholar 

  • Sethunathan N, Pathak MD (1972) Increased biological hydrolysis of diazinon after repeated applications in rice paddies. J Agric Food Chem 20: 586–589

    PubMed  CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973a) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19: 873–875

    CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973 b) Parathion degradation in submerged rice soils in the Philippines. J Agric Food Chem 21:504–506

    CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973c) Degradation of chlorinated hydrocarbons by Clostridium sp. isolated from lindane-amended flooded soil. Plant Soil 38: 663–666

    CAS  Google Scholar 

  • Sethunathan N, Siddaramappa R (1978) Microbial degradation of pesticides in rice soils. In: Ponnamperuma FM (ed) Soils and rice. Int Rice Res Inst, Los Banos, Philippines, pp 479–497

    Google Scholar 

  • Sethunathan N, Siddaramappa R, Rajaram KP, Barik S, Wahid PA (1977) Parathion: Residues in soil and water. Residue Rev 68: 91–122

    Google Scholar 

  • Sharom MS, Miles JRW (1981) The degradation of parathion and DDT in aqueous systems containing organic additives. J Environ Sci Health B16: 703–711

    CAS  Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980a) Persistence of 12 insecticides in water. Wat Res 14: 1089–1093

    CAS  Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980b) Behaviour of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Res 14: 1095–1100

    CAS  Google Scholar 

  • Siddaramappa R, Seiber JN (1979) Persistence of carbofuran in flooded rice soils and water. Prog Water Technol 11: 103–111

    CAS  Google Scholar 

  • Siddaramappa R, Rajaram KP, Sethunathan N (1973) Degradation of parathion by bacteria isolated from flooded soil. Appl Microbiol 26: 846–849

    PubMed  CAS  Google Scholar 

  • Siddaramappa R, Triol AC, Seiber JN, Heinrichs EA, Watanabe I (1978) The degradation of carbofuran in paddy water and flooded soil of untreated and retreated rice fields. J Environ Sci Health B13: 369–380

    Google Scholar 

  • Sikka HC, Miyazaki S, Lynch RS (1975) Degradation of carbaryl and l-naphthol by marine microorganisms. Bull Environ Contam Toxicol 13: 666–672

    PubMed  CAS  Google Scholar 

  • Simpson JL, Evans WC (1953) The metabolism of nitrophenols by certain bacteria. Biochem J 52: XXIV

    Google Scholar 

  • Sjoblad RD, Bollag JM (1977) Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Appl Environ Microbiol 33: 906–910

    PubMed  CAS  Google Scholar 

  • Sjoblad RD, Bollag JM (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganisms. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol V. Marcel Dekker, New York, pp 113–151

    Google Scholar 

  • Sjoblad RD, Minard RD, Bollag JM (1976) Polymerization of l-naphthol and related phenolic compounds by an extracellular fungal enzyme. Pestic Biochem Physiol 6: 457–463

    CAS  Google Scholar 

  • Spain JC, Veld PA van (1983) Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol 45: 428–435

    PubMed  CAS  Google Scholar 

  • Spain JC, Pritchard PH, Bourquin AW (1980) Effects of adaptation on biodégradation rates in sediment/water cores from estuarine and fresh water environments. Appl Environ Microbiol 40: 726–734

    PubMed  CAS  Google Scholar 

  • Spillner CJ, DeBaun JR, Menn JJ (1979) Degradation of fenitrothion in forest soil and effects on forest soil microbes. J Agric Food Chem 27: 1054–1060

    CAS  Google Scholar 

  • Staiff DC, Comer SW, Armstrong JF, Wolfe HR (1975) Persistence of azinophosmethyl in soil. Bull Environ Contam Toxicol 13: 362–368

    PubMed  CAS  Google Scholar 

  • Stewart DKR, Chisholm RD, Ragab MTH (1971) Long term persistence of parathion in soil. Nature (London) 229: 47

    CAS  Google Scholar 

  • Storck WJ (1980) Pesticide profits belie mature market status. Chem Eng News 58: 10–13

    Google Scholar 

  • Subba-Rao RV, Alexander M (1977a) Cometabolism of products of l,l,l-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) by Pseudomonas putida. J Agric Food Chem 25: 855–858

    CAS  Google Scholar 

  • Subba-Rao RV, Alexander M (1977b) Products formed from analogues of l,l,l-trichloro-2,2- bis(p-chlorophenyl) ethane (DDT) metabolites by Pseudomonas putida. Appl Environ Microbiol 33: 101–108

    CAS  Google Scholar 

  • Sud RK, Sud AK, Gupta KC (1972) Degradation of sevin (l-naphthyl N-methylcarbamate) by Achromobacter sp. Arch. Microbiol 87: 353–358

    CAS  Google Scholar 

  • Sumitomo Chemical Co (1973) Studies on sumithion decomposition in the environment. Interior Dep, Pestic Div, 10 pp

    Google Scholar 

  • Sundaram KMS (1973a) Degradation dynamics of fenitrothion in aqueous systems. Environ Can For Serv, Chem Control Res Inst. Ottawa, Info Rep CC-X-44, 19 pp

    Google Scholar 

  • Sundaram KMS (1973b) Degradation dynamics of fenitrothion insecticide in aquatic environments associated with forest spraying. Symp Chem Inst Canada Water Qual Parameters, Nov 19–21, Abstr No 56

    Google Scholar 

  • Symons PEK (1977) Dispersal and toxicology of the insecticide fenitrothion: predicting hazards of forest spraying. Residue Rev 68: 1–36

    PubMed  CAS  Google Scholar 

  • Szeto SY, Sundaram KMS (1982) Behavior and degradation of chloropyrifos-methyl in two aquatic models. J Agric Food Chem 30: 1032–1035

    CAS  Google Scholar 

  • Szeto SY, MacCarthy HR, Oloffs PC, Shepherd RF (1979) The fate of acephate and carbaryl in pond water. J Environ Sci Health B14: 635–654

    CAS  Google Scholar 

  • Takimoto Y, Hirota M, Inui H, Miyamoto J (1976) J Nippon Noyaku Gakkaishi 1:131 (cited by Adhya 1981b )

    Google Scholar 

  • Talbot HW, Johnson LM, Barik S, Williams D (1982) Properties of a Pseudomonas sp.-derived parathion hydrolase immobilized to porous glass and activated alumina. Biotechnol Lett 4: 209–214

    CAS  Google Scholar 

  • Teuteberg A (1964) Untersuchungen ixber den Abbau von Halogen nitrobenzolen durch Bodenbakterien. Arch Microbiol 48: 21–49

    CAS  Google Scholar 

  • The Chemagro Division Research Staff (1974) Guthion® (azinophosmethyl): Organophosphorus insecticide. Residue Rev 51: 123–180

    Google Scholar 

  • Veith GD, Kuehl DW, Puglisi EA, Glass GE, Eaton JG (1977) Residues of PCB’s and DDT in the western Lake Superior ecosystem. Arch Environ Contam Toxicol 5: 487–499

    PubMed  CAS  Google Scholar 

  • Venkateswarlu K, Sethunathan N (1978) Degradation of carbofuran in rice soils as influenced by repeated applications and exposure to aerobic conditions following anaerobiosis. J Agric Food Chem 26: 1148–1151

    CAS  Google Scholar 

  • Venkateswarlu K, Sethunathan N (1979) Metabolism of carbofuran in rice-straw amended and unamended rice soils. J Environ Qual 8: 365–368

    CAS  Google Scholar 

  • Venkateswarlu K, Gowda TKS, Sethunathan N (1977) Persistence and biodegradation of carbofuran in flooded soils. J Agric Food Chem 25: 533–536

    PubMed  CAS  Google Scholar 

  • Venkateswarlu K, Chendrayan K, Sethunathan N (1980) Persistence and biodegradation of carbaryl in soils. J Environ Sci Health B15: 421–429

    CAS  Google Scholar 

  • Virtanen MT, Roos A, Arstila AV, Hattula ML (1980) An evaluation of a model ecosystem with DDT. Arch Environ Contam Toxicol 9: 491–504

    PubMed  CAS  Google Scholar 

  • Voerman S, Besemer AFH (1975) Persistence of dieldrin, lindane and DDT in a light sandy soil and their uptake by grass. Bull Environ Contam Toxicol 13: 501–505

    PubMed  CAS  Google Scholar 

  • Walker N, Janes NF, Spokes JR, Berkum P van (1975) Degradation of l-naphthol by a soil Pseudomonad. J Appl Bacteriol 39: 281–286

    PubMed  CAS  Google Scholar 

  • Walker WW (1976) Chemical and microbiological degradation of malathion and parathion in an estuarine environment. J Environ Qual 5: 210–216

    CAS  Google Scholar 

  • Walker WW, Stojanovic BJ (1973) Microbial versus chemical degradation of malathion in soil. J Environ Qual 2: 229–232

    CAS  Google Scholar 

  • Walker WW, Stojanovic BJ (1974) Malathion degradation by an Arthrobacter species. J Environ Qual 3: 4–10

    CAS  Google Scholar 

  • Ware GW, Roan CC (1970) Interaction of pesticides with aquatic microorganisms and plankton. Residue Rev 33: 15–45

    PubMed  CAS  Google Scholar 

  • Weber K (1976) Degradation of parathion in seawater. Water Res 10: 237–241

    CAS  Google Scholar 

  • Wedemeyer G (1966) Dechlorination of DDT by Aerobacter aerogenes. Science 152: 647

    PubMed  CAS  Google Scholar 

  • Wedemeyer G (1967) Dechlorination of l,l,l-trichloro-2,2-bis (p-chlorophenyl) ethane by Aerobacter aerogenes. Appl Microbiol 15: 569–574

    PubMed  CAS  Google Scholar 

  • Williams IH, Brown MJ, Whitehead P (1976a) Persistence of carbofuran residues in some British Columbia soils. Bull Environ Contam Toxicol 15: 242–243

    CAS  Google Scholar 

  • Williams IH, Pein HS, Brown MJ (1976 b) Degradation of carbofuran by soil microorganisms. Bull Environ Contam Toxicol 15:244–249

    CAS  Google Scholar 

  • Wolfe HR, Durham WF (1966) Spillage of pesticides and residues in soil. Proc 62nd Meet, Washington St Hort Assoc, pp 91–92

    Google Scholar 

  • Wolfe HR, Staiff DC, Armstrong JP, Comer SW (1973) Persistence of parathion in soil. Bull Environ Contam Toxicol 10: 1–9

    CAS  Google Scholar 

  • Wolfe NL, Zepp RG, Gordan JA, Baugham GL, Cline DM (1977) Kinetics of chemical degradation of malathion in water. Environ Sci Technol 11: 88–93

    CAS  Google Scholar 

  • Woodcock D (1971) Metabolism of fungicides and nematicides in soils. In: McLaren AD, Skujins J (eds) Soil biochemistry, vol II. Marcel Dekker, New York, pp 337–360

    Google Scholar 

  • Yaron B, Bielorai H, Kliger L (1974) Fate of insecticides in an irrigated field: azinophosmethyl and tetradifon cases. J Environ Qual 3: 413–417

    CAS  Google Scholar 

  • Yasuno M, Hirakoso S, Sasa M, Uchida M (1965) Inactivation of some organophosphorus insecticides by bacteria in polluted water. Jpn J Exp Med 35: 545–563

    PubMed  CAS  Google Scholar 

  • Young DR, McDermott DJ, Heesen TC (1976) DDT in sediments and organisms around southern California outfalls. JWPCF 48: 1919–1928

    CAS  Google Scholar 

  • Yu CC, Booth GM, Hansen DJ, Larsen JR (1974) Fate of carbofuran in a model ecosystem. J Agric Food Chem 22: 431–434

    PubMed  CAS  Google Scholar 

  • Yule WN, Duffy JR (1972) The persistence and fate of fenitrothion insecticide in a forest environment. Bull Environ Contam Toxicol 8: 10–18

    PubMed  CAS  Google Scholar 

  • Ziegler W, Engelhardt G, Wallnofer PR, Oehlmann L, Wagner K (1980) Degradation of Demeton S-methyl sulfoxide ( Metasystox-R) by soil microorganisms. J Agric Food Chem 28: 1102–1106

    CAS  Google Scholar 

  • Zitko V, Cunningham TD (1974) Fenitrothion, derivatives, and isomers: Hydrolysis, adsorption and biodegradation. Fish Res Board Can Tech Rep 458: 27

    Google Scholar 

  • Zoro JA, Hunter JM, Eglinton G, Ware GC (1974) Degradation of p,p′-DDT in reducing environment. Nature (London) 247: 235–236

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barik, S. (1984). Metabolism of Insecticides by Microorganisms. In: Lal, R. (eds) Insecticide Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69917-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69917-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69919-1

  • Online ISBN: 978-3-642-69917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics