Skip to main content

Insecticides and Microbial Environments

  • Chapter
Insecticide Microbiology
  • 295 Accesses

Abstract

By and large, insects have been the most successful of living forms, the class Insecta having more species than all other classes of animals combined. Even now, every year, insects account for a major loss to our food and property and are a serious health hazard, as vectors of many diseases. Hence, it is little wonder that insecticides (pesticides used to control insects) are the largest class of pesticides manufactured and used throughout the world, in an array of forms, to control the insects and thereby the destruction caused by them. The U.S. Federal Environmental pesticide Control Act defines a pesticide as “Any substance or mixture of substances intended for preventing, destroying, repelling or mitigating any insect, rodent, nematode, fungus, weed or any other form of terrestrial or aquatic plant or animal life or virus, bacteria or other micro-organism which the Administrator declares to be a pest, except viruses, bacteria or other micro-organism on or in living man or other animals …” Thus, the term pesticide-insecticide includes all chemicals intended for use in agriculture or horticulture except fertilizers and chemicals used to control pests of any kind except veterinary products and drugs for internal parasites or pests of man and animals. The use of insecticides has made an enormous contribution to agriculture and public health. They have brought tremendous benefits through increased food and fiber production, control of vectors of human and livestock diseases, and protection of structures from insect damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahrens R, Rheinheimer G (1967) Über einige sternbildende Bakterien aus der Ostsee. Kiel Meeresforsch 23: 123–136

    Google Scholar 

  • Alderman DJ (1976) Fungal diseases of marine animals. In: Jones EGB (ed) Recent advances in aquatic micology. Elek Science, London, pp 223 –260

    Google Scholar 

  • Alexander M (1964) Biochemical ecology of soil microorganisms. Annu Rev Microbiol 18: 217–252

    PubMed  CAS  Google Scholar 

  • Allison FE (1968) Soil aggregation — some facts and fallacies as seen by a microbiologist. Soil Sci 106: 136–143

    CAS  Google Scholar 

  • Anderson JD, Cox CS (1967) Microbial survival. In: Gregory PH, Monteith JL (eds) Airborne microbes. 17th Symp Soc Gen Microbiol. Cambridge Univ Press, Cambridge, pp 203–226

    Google Scholar 

  • Bainbridge A, Legg BJ (1976) Release of barley-mildew conidia from shaken leaves. Trans Br Mycol Soc 66: 495–498

    Google Scholar 

  • Bansemir K, Rheinheiner G (1970) Bakterielle Sulfatreduktion und Schwefeloxidation. In: Chemische, mikrobiologische und planktologische Untersuchungen in der Schlei im Hinblick auf deren Abwasserbelastung. Kiel Meeresforsch 26: 170–173

    Google Scholar 

  • Berman T, Rodhe W (1971) Distribution and migration of Peridinium in lake Kinneret. Mitt Int Ver Limnol 19: 266–276

    Google Scholar 

  • Bocock KL (1964) Changes in the amounts of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of the soil fauna. J Ecol 52: 273–284

    Google Scholar 

  • Bocock KL, Gilbert OJW, Capstick CK, Twinn DC, Waid JS, Woodman MJ (1960) Changes in leaf litter when placed on the surface of soils with contrasting humus types. I Losses in dry weight of oak and ash leaf litter. J Soil Sci 11: 1–19

    Google Scholar 

  • Bray JR, Gorham E (1964) Litter production in forests of the world. Adv Ecol Res 2: 101–157

    Google Scholar 

  • Brock TD (1966) Principles of microbial ecology. Prentice Hall Inc, Englewood Cliffs

    Google Scholar 

  • Brock TD (1969) Microbial growth under extreme conditions. In: Meadow, PM, Pirt S J (eds) Microbial growth. Cambridge Univ Press, London, p 15

    Google Scholar 

  • Brooks GT(1974) Chlorinated insecticides, vols I, II. CRC Press, Cleveland, Ohio

    Google Scholar 

  • Bruce J, Morris EO (1973) Psychrophilic yeasts isolated from marine fish. Antonie van Leeuwenhoek J Microbiol Serol 39: 331–339

    CAS  Google Scholar 

  • Burford JR (1976) Effect of the application of cow slury to grassland on the composition of the soil atmosphere. J Sci Food Agric 17: 115–126

    Google Scholar 

  • Burges A (1958) Microorganisms in the soil. Hutchinson, London

    Google Scholar 

  • Cameron WM, Pritchard DW (1963) Estuaries. In: Hill MN (ed) The sea, vol II. Wiley and Sons, New York, pp 306–323

    Google Scholar 

  • Casida JE (ed) (1973) Pyrethrum. Academic Press, London New York

    Google Scholar 

  • Cohen JM, Pinkerton C (1966) Widespread translocation of pesticides by air transport and rain-out. Adv Chem Ser 60: 163–176

    Google Scholar 

  • Collins VG (1960) The distribution and ecology of Gramnegative organisms other than Enterobacteriaceae in lakes. J Appl Bacteriol 23: 510–514

    Google Scholar 

  • Colwell RR (1972) Bacteria, yeasts, viruses and related microorganisms of the Chesapeake Bay. Chesapeake Sci 13: 569–570

    Google Scholar 

  • Cooke WB (1961) Pollution effects on the fungus population of a stream. Ecology 42: 1–18

    Google Scholar 

  • Corbett JR (1974) The biochemical mode of action of pesticides. Academic Press, London New York

    Google Scholar 

  • Craven RE, Brown BE (1970) Physicochemical conditions of Boomer Lake, Payne county, Oklahoma. Proc Okla Acad Sci 49: 23–29

    Google Scholar 

  • Crosby DG (1976) Natural pest control agents. Chem Soc, Washington, DC

    Google Scholar 

  • Curtis EJC (1969) Sewage fungus, its nature and effects. Water Res 3: 189–311

    Google Scholar 

  • Dale NG (1974) Bacteria in intertidal sediments: factors related to their distribution. Limnol Oceanogr 19: 509–518

    Google Scholar 

  • Darbyshire JF (1975) Soil protozoa-animalcules of the subterranean microenvironments. In: Walker N (ed) Soil microbiology. Butterworth, London, p 147

    Google Scholar 

  • Davis CC (1972) Plankton succession in a Newfoundland Lake. Int Rev Ges Hydrobiol 57: 367–395

    Google Scholar 

  • Decker GC, Weinman CJ, Bann JM (1950) A preliminary report on the rate of insecticide residue loss from treated plants. J Econ Entomol 43: 919–927

    CAS  Google Scholar 

  • Dickinson CH, Preece T (eds) (1976) Microbiology of aerial plant surfaces. Academic Press, London New York

    Google Scholar 

  • Diem HG (1974) Micro-organisms of the leaf surface: estimation of the mycoflora of the barley phyllosphere. J Gen Microbiol 80: 77–83

    Google Scholar 

  • Dommergues Y (1962) Contribution à l’étude de la dynamique microbienne des sols en zone semiaride et en zone tropical sèche. Ann Agron 13: 262–324

    Google Scholar 

  • Drebes G (1966) Ein parasitischer Phycomycet (Lagenidiales) in Coscinodiscus. Helgol Wiss Meeresunters 13: 426–435

    Google Scholar 

  • Eddy BP (1960) The use and meaning of the term ‘Psychrophilic’. J Appl Bacteriol 23: 189–190

    Google Scholar 

  • Edmondson WT (1972) Nutrients and phytoplankton in Lake Washington. Am Soc Limnol Oceanogr Spec Symp 1: 172–193

    CAS  Google Scholar 

  • Edwards CA (1974) Persistent pesticides in the environment, 2nd edn. CRC Monosci Ser. Butterworths, London

    Google Scholar 

  • Ehlers WM, Farmer WJ, Spencer WF, Letey J (1969) Lindane diffusion in soil: II Water Content, bulk density and temperature effects. Proc Soil Sci Soc Am 33: 505–508

    CAS  Google Scholar 

  • Ehresmann DW, Hatch MT (1975) Effect of relative humidity on the survival of unicellular algae. Appl Microbiol 29: 352–357

    PubMed  CAS  Google Scholar 

  • Epstein E, Grant WJ (1968) Chlorinated insecticides in runoff as affected by crop rotation. Proc Soil Sci Soc Am 32: 423–426

    CAS  Google Scholar 

  • Eto M (1974) Organophosphorus pesticides: Organic and biological chemistry. CRC Press, Cleveland, Ohio

    Google Scholar 

  • Evans PR (1974) Global transport of pesticides by birds. Chem Ind (NY) 197–199

    Google Scholar 

  • Fjerdingstad E (1964) Pollution of streams estimated by benthomic phytomicro-organisms. I. A saprobic system based on communities of organisms and ecological factors. Int Rev Hydrobiol 49: 63–131

    Google Scholar 

  • Fjerdingstad E (1971) Microbial criteria of environment qualities. Annu Rev Microbiology 25: 563–582

    CAS  Google Scholar 

  • Fogg GE (1965) Algal cultures and phytoplankton ecology. Univ Wisconsin Press, Madison, Wisconsin

    Google Scholar 

  • Fogg GE (1966) The extracellular products of algae. Oceanogr Mar Biol Ann Rev 4: 195–212

    CAS  Google Scholar 

  • Fogg VH, Hague R, Schmedding D (1972) Vaporization and Environmental contamination by DDT. Chemosphere 1: 61

    Google Scholar 

  • Freed VH, Hague R, Schmedding D (1972) Vaporization and environmental contamination by DDT Chemosphere 1: 61

    CAS  Google Scholar 

  • Ganf GG, Viner AB (1973) Ecological stability in a shallow equatorial lake (Lake George, Uganda ). Proc R Soc London Ser B 184: 321–346

    Google Scholar 

  • Garrett SD (1951) Ecological groups of soil fungi; a survey of substrate relationship. New Phytol 50: 149–166

    Google Scholar 

  • Genovese S, Rigano C, Cava M La (1962) Ulteriori osservazioni sulla presenza dell’ “Acqua Rossa” nel lago di Faro. Atti Soc Peloritana Sci Fis Mat Nat 8: 503–510

    Google Scholar 

  • Gerakis PA, Sficas AG (1974) The presence and cycling of pesticides in the ecosphere. Residue Rev 52: 69–87

    CAS  Google Scholar 

  • Gerloff GC (1963) Comparative mineral nutrition of plants. Annu Rev Plant Physiol 14: 107–123

    CAS  Google Scholar 

  • Gilbert OJW, Bocock KL (1960) Changes in the leaf litter when placed on the surface of soils with contrasting humus types. II. Changes in the nitrogen content of oak and ash leaf litter. J Soil Sci 11: 10–19

    Google Scholar 

  • Golterman HL (1969) Methods for chemical analysis of fresh waters. IBP Handbook no 8. Blackwell Sci Publ, Oxford

    Google Scholar 

  • Golterman HL (1975) Physiological limnology. Elsevier Sci Publ, New York

    Google Scholar 

  • Goulder R (1974) The seasonal and spatial distribution of some benthic ciliated protozoa in Esthwaite water. Freshwater Biol 4: 127–147

    Google Scholar 

  • Gray TRG, Williams ST (1971) Microbial productivity in soil. In: Hughes De, Rose AH (eds) Microbes and biological productivity. 21st Symp Soc Gen Microbiol. Cambridge Univ Press, Cambridge, pp 255–286

    Google Scholar 

  • Green MB, Hartley GS, West TF (1977) Chemicals for crop protection and pest control. Pergamon Press, New York

    Google Scholar 

  • Greenwood DJ (1961) The effect of oxygen concentration on the decomposition of organic materials in soil. Plant Soil 24: 360–376

    Google Scholar 

  • Greenwood DJ, Berry G (1962) Aerobic respiration in soil crumbas. Nature (London) 195: 161–163

    CAS  Google Scholar 

  • Gregory PH (1973) Microbiology of the atmosphere. Leonard Hill, Aylesburg

    Google Scholar 

  • Griffin DM (1972) Ecology of soil fungi. Chapman and Hall, London

    Google Scholar 

  • Hawkes HA (1976) Determinants in fresh water ecosystems and morn-modifiable factors inducing change in hydro-bioconoses. In: Amavis R, Smeets J (eds) Principles and methods for determining ecological criteria on hydrobiocenoses. Pergamon Press, Oxford, pp 45–73

    Google Scholar 

  • Healey FP (1973) Inorganic nutrient uptake and deficiency in algae. Crit Rev Microbiol 3: 69–113

    CAS  Google Scholar 

  • Heath GW, Arnold MK (1966) Studies in leaf-litter breakdown. II. Breakdown rate of “sun” and “shade” leaves. Pedobiologia 6: 238–243

    Google Scholar 

  • Hirst JM (1953) Changes in atmospheric spore content: diurnal periodicity and the effects of weather. Trans Br Mycol Soc 36: 375–393

    Google Scholar 

  • Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67: 837–874

    Google Scholar 

  • Hughes GC (1975) Studies of fungi in ocean and estuaries since 1961. I Lignicolous, Caulicolous and Folicolous species. Oceanogr Mar Biol Annu Rev 13:69–180

    Google Scholar 

  • Hunter SH, Provasoli L (1964) Nutrition of algae. Annu Rev Plant Physiol 15: 37–56

    Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology, vol I. Geography, physics and chemistry. Wiley and Sons, New York

    Google Scholar 

  • Hutchinson GE (1967) A treatise on limnology, vol II. Introduction to lake biology and the limnolankton. Wiley and Sons, New York

    Google Scholar 

  • Hynes HBN (1960) The biology of polluted waters. Liverpool Univ Press, Liverpool

    Google Scholar 

  • Hynes HBN ( 1970 ) The ecology of running waters. Liverpool Univ Press, Liverpool

    Google Scholar 

  • Ingold CT (1953) Dispersal in fungi. Clarendon Press, Oxford

    Google Scholar 

  • Ingold CT (1965) Spore liberation. Clarendon Press, Oxford

    Google Scholar 

  • Ingold CT (1966) Spore release. In: Ainsworth GC, Sussman AS (eds) The fungi, vol II. Academic Press, London New York, p 679

    Google Scholar 

  • Ingold CT (1971) Fungus spores: their liberation and dispersal. Clarendon Press, Oxford

    Google Scholar 

  • Iturriaga R, Hoppe HG (1977) Observation of heterotrophic activity on photoassimilated organic matter. Mar Biol 40: 101–108

    Google Scholar 

  • Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries. Cramer, Weinheim

    Google Scholar 

  • Jones EBG (1976) Recent advances in aquatic mycology. Elek Science, London

    Google Scholar 

  • Jones JG (1971) Studies on freshwater bacteria: factors which influence the population and its activity. J Ecol 59: 593–613

    Google Scholar 

  • Jones JG (1972) Studies on freshwater bacteria: association with algae and alkaline phosphatase activity. J Ecol 60: 59–75

    CAS  Google Scholar 

  • Jones JG (1973) Studies on freshwater bacteria: the effect of enclosure in large experimental tubes. J Appl Bacteriol 36: 445–456

    Google Scholar 

  • Jones K (1974) Nitrogen fixation in a salt marsh. J Ecol 62:553–565

    Google Scholar 

  • Jorgensen CB (1966) Biology of suspension feeding. Pergamon Press, Oxford

    Google Scholar 

  • Kaushik NK, Hynes HBN (1968) Experimental study on the role of autumn-shed leaves in aquatic environments. J Ecol 56: 229–243

    Google Scholar 

  • Kenaga EE (1972) Guidelines for environmental study of pesticides: Determination of bioconcentration potential. Residue Rev 44: 73–113

    PubMed  CAS  Google Scholar 

  • Kiigemagi U, Terriere LC (1971) Losses of organophosphorus insecticides during application to the soil. Bull Environ Contam Toxicol 6: 336–342

    PubMed  CAS  Google Scholar 

  • Klein L (1962) River pollution. 2. Causes and effects. Butterworths, London

    Google Scholar 

  • Kohlmeyer J (1972) Parasitic Haloguignardia occanica (Ascomycetes) and hyperparasitic Sphaceloma cedidii sp. nov. (Deuteromycetes) in drifft Sargassum in North Carolina. J Elisha Mitchell Sci Soc 88: 255–259

    Google Scholar 

  • Kohlmeyer J (1974) Higher fungi as parasites and symbionts of algae. Veroeff Inst Meeresforsch Bremerhaven Suppl 5: 339–356

    Google Scholar 

  • Koops HP, Harms H, Wehrman H (1976) Isolation of a moderate halophilic ammonia-oxidizing bacterium Nitrosococcus mobilis nov. sp. Arch Microbiol 107: 277–282

    PubMed  CAS  Google Scholar 

  • Kouyeas V (1964) An approach to the study of moisture relations of soil fungi. Plant Soil 20: 351–363

    Google Scholar 

  • Kusnezow SI (1959) Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. VEB Dtsch Verlag Wiss, Berlin, 301 p

    Google Scholar 

  • Last FT (1955) Seasonal incidence of sporobolomyces on cereal leaves. Trans Br Mycol Soc 38: 221–239

    Google Scholar 

  • Last FT, Warren RC (1972) Non-Parasitic microbes colonizing green leaves: their form and functions. Endeavour 31: 143–150

    Google Scholar 

  • Latter PM, Cragg JD (1967) The decomposition of Juncus squarrosus leaves and microbiological changes in the profile of Juncus moor. J Ecol 55: 465–482

    Google Scholar 

  • Lenz J (1977) Plankton populations. In: Rheinheimer G (ed) Microbial ecology of a brackish water environment. Springer, Berlin Heidelberg New York, pp 79–89

    Google Scholar 

  • Lewin RA (1962) Physiology and biochemistry of algae. Academic Press, London New York

    Google Scholar 

  • Lichtenstein EP, Schulz KR (1970) Volatilization of insecticides from various substrates. J Agric Food Chem 18: 814–818

    PubMed  CAS  Google Scholar 

  • Lueschow LA, Helm JM, Winter DR, Karl GW (1970) Trophic nature of selected Wisconsin Lakes. Wisconsin Acad Sci Arts Lett 58: 237–264

    Google Scholar 

  • Lynch JM, Harper SHT (1974) Fungal growth rate and the formation of ethylene in soil. J. Gen Microbiol 85: 91–96

    PubMed  CAS  Google Scholar 

  • Macan TT, Maudsley R (1966) The temperature of moorland fishpond. Hydrobiologia 27: 1–22

    Google Scholar 

  • Madelin MF, Linton AH (1971) Microbiology of air. In: Hawker LE, Linton AH (eds) Microorganisms: Function form and environment. Edward Arnold, London, pp 529–537

    Google Scholar 

  • Mason CF (1981) Biology of freshwater pollution, Longman, London

    Google Scholar 

  • Matsumura F (1974) Microbial degradation of pesticides. In: Khan MAQ, Bederka JP (eds) Survival in toxic environments. Academic Press, London New York, pp 129–154

    Google Scholar 

  • McColl RHS (1972) Chemistry and trophic status of seven New Zealand lakes. NZ J Mar Freshwater Res 6: 399–447

    CAS  Google Scholar 

  • McLaren AD (1960) Enzyme activity in structurally restricted systems. Enzymologia 21: 356–364

    CAS  Google Scholar 

  • McLaren AD, Skujin JJ (1963) Nitrification by Nitrobacter agilis on surfaces and in soil with respect to hydrogen ion concentration. Can J Microbiol 9: 729–731

    CAS  Google Scholar 

  • McLeod RA (1965) The question of existence of specific marine bacteria. Bacteriol Rev 29: 9–23

    Google Scholar 

  • Menzer RF, Fontanilla EL, Ditman LP (1970) Degradation of disulfoton and phorate in soil influenced by environmental factors and soil type. Bull Environ Contam Toxicol 5: 1–9

    CAS  Google Scholar 

  • Moriarty F (1975) Organochlorine insecticides. Academic Press, London New York

    Google Scholar 

  • Moss B (1969) Vertical heterogeneity in the water column of Abbott’s pond. I. The distribution of temperature and dissolved oxygen. J Ecol 57: 381–396

    Google Scholar 

  • Moss B (1972) The influence of environmental factors on the distribution of freshwater algae: an experimental study. I. Introduction and the influence of calcium concentration. J Ecol 60: 917–932

    CAS  Google Scholar 

  • Moss B (1973) Diversity in fresh-water plankton. Am Mdl Nat 90: 341–355

    Google Scholar 

  • Moss B, Moss J (1969) Aspects of the limnology of an endorheic African lake (L Chilwa, Malawi). Ecology 50: 109–118

    CAS  Google Scholar 

  • Nicholas DJD (1963) Inorganic nutrient nutrition of microorganisms. In: Steward FC (ed) Plant physiology, vol III. Academic Press, London New York, pp 363–447

    Google Scholar 

  • Nicholson HP (1967) Pesticide pollution control. Science 158: 871–876

    PubMed  CAS  Google Scholar 

  • Norkrans B (1966) On the occurrence of yeasts in an estuary off the Swedish west coast. Sven Bot Tidskr 60: 463–482

    Google Scholar 

  • O’Brien RD (1967) Insecticides, action and metabolism. Academic Press, London New York

    Google Scholar 

  • O’Connell, Andrews CW (1976) Physical and chemical conditions in long pond St John’s Newfoundland: A pond receiving both rural and urban runoff. Int Rev Ges Hydrobiol 61: 63–87

    Google Scholar 

  • Odum EP (1971) Fundamentals of ecology, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Odum HT, Copeland BJ, McMahan EA (1969) Coastal ecological systems of the United States. Rep Fed Water Pollut Control Administration (Mimeographed )

    Google Scholar 

  • Okafor N (1966) Ecology of micro-organisms on chitin buried in soil. In Gen Microbiol 44: 311–327

    Google Scholar 

  • O’Kelley JC (1968) Mineral nutrition of algae. Annu Rev Plant Physiol 19: 89–112

    Google Scholar 

  • Overbeck J (J974) Microbiology and biochemistry. Mitt Int Ver Theor Angew Limnol 20:198–228

    Google Scholar 

  • Ovington JD (1962) Quantitative ecology and the woodland ecosystem concept. Adv Ecol Res 1: 103–197

    Google Scholar 

  • Parsons Y, Takahashi M (1973) Biological oceanographic processes. Pergamon Press, Oxford, pp 186

    Google Scholar 

  • Peterle TJ (1969) DDT in antarctic snow. Nature (London) 224: 620

    CAS  Google Scholar 

  • Powlson DS (1975) Effects of biocidal treatments on soil organisms. In: Walker N (ed) Soil microbiology. Butterworths, London, pp 193–224

    Google Scholar 

  • Preece T, Dickinson CH (1971) Ecology of leafsurface micro-organisms. Academic Press, London New York

    Google Scholar 

  • Pritchard DW (1967) What is an estuary: physical viewpoint. In: Lauff GH (ed) Estuaries. Am Assoc Adv Sci Publ No 83, Washington, DC, pp 3–5

    Google Scholar 

  • Raney WA (1965) Physical factors of the soil as they affect micro-organisms. In: Baker KF, Synder WC (eds) Ecology of soil-borne plant pathogens. Univ California Press, Berkeley, pp 115–118

    Google Scholar 

  • Rangaswami G, Sadasivam KV (1964) Studies on the occurrence of Azobactor in some soil types. J Indian Soc Soil Sci 12: 43–49

    CAS  Google Scholar 

  • Reid GK, Wood RD (1976) Ecology of inland water and estuaries. Van Nostrand, New York

    Google Scholar 

  • Remane A, Schlieper C (1971) Biology of brackish water. Die Binnengewässer, vol 25. Wiley, New York

    Google Scholar 

  • Reynolds CS (1976) Succession and vertical distribution of phytoplankton in response to thermal stratification in a lowland mere with special reference to nutrient availability. J Ecol 64: 529–551

    CAS  Google Scholar 

  • Rheinheim er G (1974) Aquatic microbiology. Wiley Interscience, London

    Google Scholar 

  • Rheinheimer G (1975) Mikrobiologie der Gewässer, 2nd edn. Fischer, Stuttgart

    Google Scholar 

  • Rose CW(1966) Agricultural physics. Pergamon, Oxford

    Google Scholar 

  • Rosenberg NJ (1974) Microclimate: the biological environment. Wiley, New York

    Google Scholar 

  • Rovira AD (1965) Interactions between plant roots and soil micro-organisms. Annu Rev Microbiol 19: 241–266

    PubMed  CAS  Google Scholar 

  • Rovira AD (1972) Studies on the interactions between plant roots and micro-organisms. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. Univ California Press, Berkeley, pp 170–184

    Google Scholar 

  • Ruinen J (1956) Occurrence of Bejerinckia in the “Phyllosphere”. Nature (London) 177: 220–221

    Google Scholar 

  • Ruinen J (1961) The phyllosphere. I. An ecologically neglected milieu. Plant Soil 15: 81–109

    Google Scholar 

  • Russell EW (1968) The agricultural environment of soil bacteria. In: Gray TRG, Parkinson D (eds) The ecology of soil bacteris. Liverpool Univ Press, Liverpool, pp 77–89

    Google Scholar 

  • Sakamoto M (1966a) The chlorophyll amount in the euphotic zone in some Japanese lakes and its significance in the photosynthetic production of phytoplankton communities. Bot Mag 79: 77–88

    CAS  Google Scholar 

  • Sakamoto M (1966b) Primary production by phytoplankton community in some Japanese Lakes and its dependence on lake depth. Arch Hydrobiol 62: 1–28

    Google Scholar 

  • Seiber JN, Woodrow JE, Shafik TM, Enos HF (1975) Determination of pesticides and their transformation products in air. In: Haque R, Freed VH (eds) Environmental dynamics of pesticides. Plenum Press, New York, pp 17–44

    Google Scholar 

  • Shannon EE, Brezonik PL (1972) Relationships between lake trophic status and nitrogen and phosphorus loading rates. Environ Sci Technol 6: 719–725

    CAS  Google Scholar 

  • Shenoi MM, Ramalingam A (1975) Circadian periodicities of some spore components of air at Mysore. Arogya J Health Sci 1: 154–156

    Google Scholar 

  • Shields LM, Durrell LW(1964) Algae in relation to soil fertility. Bot Rev 30: 92–128

    CAS  Google Scholar 

  • Singh RN (1955) Limnological relations of Indian inland waters with special reference to waterblooms. Verh Int Ver Limnol 12: 831–836

    Google Scholar 

  • Skinner FA (1975) Anaerobic bacteria and their activities in soil. In: Walker N (ed) Soil microbiology. Butterworths, London, pp 1–19

    Google Scholar 

  • Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94: 972–983

    PubMed  CAS  Google Scholar 

  • Sodergren A (1972) Chlorinated hydrocarbon residues in airborne fall out. Nature (London) 236: 395–397

    CAS  Google Scholar 

  • Soeder C, Stengel E (1974) Physio-chemical factors affecting metabolism and growth rates. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Sci Publ, Oxford, pp 714–740

    Google Scholar 

  • Spencer CW, Farmer WJ, Cliath MM (1973) Pesticide volatilization. Residue Rev 49: 1–47

    CAS  Google Scholar 

  • Spencer WF (1975) Movement of DDT and its derivatives into the atmosphere. Residue Rev 59: 91–117

    CAS  Google Scholar 

  • Spencer WF, Cliath MM (1972) Volatility of DDT and related compounds. J Agric Food Chem 20: 645–649

    PubMed  CAS  Google Scholar 

  • Stanly CW, Barney JE, Helton MR, Yobs AR (1971) Measurement of atmospheric levels of pesticides. Environ Sci Technol 5: 430–435

    CAS  Google Scholar 

  • Starkey RL (1958) Interrelation between micro-organisms and plant roots in the rhizosphere. Bacteriol Rev 22: 154–172

    PubMed  CAS  Google Scholar 

  • Stengel E (1970) Zustandsänderungen verschiedener Eisen Verbindungen in Nährlösungen für Algen. Arch Hydrobiol Suppl 38: 151–169

    Google Scholar 

  • Stewart WDP (1965) Nitrogen turnover in marine and brackish habitats. I. Nitrogen. Ann Bot (London) 29: 229–239

    CAS  Google Scholar 

  • Stotzky G (1975) Microbial metabolism in soil. Proc 1st Intersect Congr IAMS 2: 249–261

    Google Scholar 

  • Stotzky G, Goos RD (1965) Effect of high CO2 and Low O2 tensions on the soil microbiota. Can J Microbiol 11: 853–868

    PubMed  CAS  Google Scholar 

  • Stotzky G, Goos RD, Timonin MJ (1962) Microbial changes in soil as a result of storage. Plant Soil 16: 1–18

    Google Scholar 

  • Storm KM (1930) Limnological observations on Norwegian lakes. Arch Hydrobiol 21: 97–124

    Google Scholar 

  • Talling JF (1962) Freshwater algae. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic Press, London New York, pp 743–757

    Google Scholar 

  • Talling JF (1971) The underwater light climate as a controlling factors in the production ecology of freshwater phytoplankton. Mitt Int Ver Theor Angew Limnol 19: 214–243

    Google Scholar 

  • Talling JF, Talling IB (1965) The chemical composition of African lake waters. Int Rev Ges Hydrobiol 50: 421–463

    Google Scholar 

  • Travleev AP (1960) The role of forest litter in heat insulation. Pochvovedenie 10: 92–95

    Google Scholar 

  • Uden N van (1967) Occurrence and origin of yeasts in estuaries. In: Lauff GH (ed) Estuaries. AAAS Washington Publ 83: 306–310

    Google Scholar 

  • Valentine JP, Bingham SW (1974) Influence of several algae on 2,4-D residues in water. Weed Sci 22: 358–363

    CAS  Google Scholar 

  • Vallentyne JR (1974) The algal Bowl: Lakes and man. Dept of Environ Fisheries and Marine Service, Ottawa, Canada, Miscellaneous Spec Publ 22

    Google Scholar 

  • Viner AB (1976) The sediments of lake George (Uganda). III. The uptake of phosphate. Arch Hydrobiol 76: 393–410

    Google Scholar 

  • Vollenweider RA (1961) Photometric studies in inland waters. Relations existing in the special extinction of light in water. Mem Ist Ital Idrobiol 13: 87–113

    Google Scholar 

  • Vollenweider RA (1965) Materiale ed idee per una idrochimica delle a acque insubriche. Mem Ist Ital Idrobiol 19: 213–286

    Google Scholar 

  • Vollenweider RA (1968) The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Tech Tep OECD, Paris DAS/DSI/68 27: 1–182

    Google Scholar 

  • Vollenweider RA (1969) A manual on methods for measuring primary production in aquatic environments. IBP Handbook, no 12. Blackwell Sci Publ, Oxford

    Google Scholar 

  • Warcup JH (1957) Studies on the occurrence and activity of fungal in a wheat field soil. Trans Br Mycol Soc 40: 237–262

    Google Scholar 

  • Watson SW (1965) Characteristics of a marine nitrifying bacterium, Nitrosocystis occeanus sp. nov. Limnol Oceanogr 10: 274–289

    Google Scholar 

  • Watson SW, Waterbury JB (1971) Characteristics of two marine nitrite-oxidizing bacteria Nitrospina gracilis nov. gen., nov sp. and Nitrococcus mobilis nov. Arch Mikrobiol 77: 203–230

    Google Scholar 

  • Webb JL (1966) Enzyme and metabolic inhibitors, vol III. Academic Press, London New York, p 1028

    Google Scholar 

  • Wheatley GA (1973) Pesticides in the atmosphere. In: Edwards CA (ed) Environmental pollution by pesticides. Plenum Press, London New York, pp 365–408

    Google Scholar 

  • Wilkins WH, Harris GCM (1947) The ecology of larger fungi. V. An investigation into the influence of rainfall and temperature on seasonal production of fungi in a beech wood and a pine wood. Ann Appl Biol 33: 179–188

    Google Scholar 

  • Williams PJ LeB, Yentsch CS (1976) An Examination of photosynthetic production, excertion of photosynthetic products, and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea. Mar Biol 35: 31–40

    CAS  Google Scholar 

  • Williams ST, Mayfield CI (1971) Studies on the ecology of actinomycetes in soil. III. The behaviour of neutrophilic streptomycetes in acid soils. Soil Biol Biochem 3: 197–208

    Google Scholar 

  • Williams ST, Parkinson D (1964) Studies of fungi in a podzol. I. Nature and fluctuations of the fungus flora of the mineral horizons. J Soil Sci 15: 331–341

    Google Scholar 

  • Willoughby IG (1976) Freshwater biology. Hutchinson, London

    Google Scholar 

  • Wood EJF (1965) Marine microbial ecology. Chapman & Hall, London

    Google Scholar 

  • Woodwell GM, Graig PP, HojJohnson MA (1971) DDT in the biosphere: Where does it go? Science 174: 1101–1107

    PubMed  CAS  Google Scholar 

  • Woollett LL, Hendrick LR (1970) Ecology of yeasts in polluted water. Antonie van Leeuwenhoek J Microbiol Serol 36: 427–435

    CAS  Google Scholar 

  • Yentsch CS, Ryther JH (1959) Relative significance of the net phytoplankton and nannoplankton in the waters of Vineyyard Sound. J Cons Perm Int Explor Mer 24: 231–238

    Google Scholar 

  • Young DR, McDermott DJ, Heesen TC (1976) Aerial fallout of DDT in southern California. Bull Environ Contam Toxicol 16: 604–611

    PubMed  CAS  Google Scholar 

  • Zafar AR (1959) Taxonomy of lakes. Hydrobiologia 13: 287–299

    Google Scholar 

  • ZoBell CE (1963) Domain of the marine microbiologist. In: Oppenheimer CH (ed) Symposium on marine microbiology. Thomas, Springfield, 111, pp 3–24

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, S.K. (1984). Insecticides and Microbial Environments. In: Lal, R. (eds) Insecticide Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69917-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69917-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69919-1

  • Online ISBN: 978-3-642-69917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics