Skip to main content

Abstract

With the exception of heart rate and V O2, blood lactate is probably the most common physiological measurement made in ergometry and sports medicine. It is commonly associated with theories of fatigue, pain, and perceived exertion and assumed to be diffusing across membranes passively and/or freely and to directly reflect muscle metabolism. Direct, conclusive evidence for many of these interpretations is lacking, and there is a growing body of knowledge that is demonstrating that our basic assumptions concerning lactate metabolism are simplistic. This report will attempt to review fundamental aspects concerning sampling and analyzing of lactate samples, interpretations of lactate levels, and some factors that can influence lactate levels independent of muscle activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Margaria R, Oliva D, Di Prampero PE, Cerretelli P (1969) Energy utilization in intermittent exercise of supramaximal intensity. J Appl Physiol 26: 752–756

    PubMed  CAS  Google Scholar 

  2. Gisolfi C, Robinson S (1970) Venous blood distribution in the legs during intermittent treadmill work. J Appl Physiol 29: 368–373

    PubMed  CAS  Google Scholar 

  3. Newton JL, Robinson S (1965) The distribution of blood lactate and pyruvate during work and recovery. Fed Proc 24: 590

    Google Scholar 

  4. Gordon RS, Thompson RH, Muenzer J, Thrasher D (1971) Sweat lactate is derived from blood glucose. J Appl Physiol 31: 713–716

    PubMed  CAS  Google Scholar 

  5. Ricci B (1968) Measurement of oxygen debt and of blood lactate and pyruvate. In Knuttgen, H.G (ed) Physiological aspects of sports and physical fitness. Am Coll Sport Med and the Athletic Institute Philadelphia pp 12–15

    Google Scholar 

  6. McEvoy JDS, Jones NL (1975) Arterialized capillary blood gases in exercise studies. Med Sci Sports 7: 312–315

    PubMed  CAS  Google Scholar 

  7. Forster HV, Dempsey JA, Thomson J, Vidruk E, DoPico GH (1972) Estimation of arterial P02, PC02, pH, and lactate from arterialized venous blood. J Appl Physiol 32: 134–137

    PubMed  CAS  Google Scholar 

  8. Dunn RB, Critz JB (1975) Uptake of lactate by dog skeletal muscle in vivo and the effect of free fatty acids. Am J Physiol 229: 255–259

    PubMed  CAS  Google Scholar 

  9. Dunn RB, Critz JB (1975) Effect of circulating FFA on lactate production by skeletal muscle during stimulation. J Appl Physiol 38: 801–805

    PubMed  CAS  Google Scholar 

  10. Elder, GCB, Bradbury K, Roberts R (1982) Variability of fiber type distributions within human muscles. J Appl Physiol 50: 1473–1480

    Google Scholar 

  11. Essén B (1978) Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. Acta Physiol Scand [Suppl] 454: 1–67

    Google Scholar 

  12. Essén B, Haggmark T (1975) Lactate concentration in type I and II muscle fibers during muscle contractions in man. Acta Physiol Scand 95: 344–346

    Article  PubMed  Google Scholar 

  13. Graham TE, Sinclair DG, Chapler CK (1976) Metabolic intermediates and lactate diffusion in active dog skeletal muscle. Am J Physiol 231: 766–771

    PubMed  CAS  Google Scholar 

  14. Karlsson J (1971) Lactate and phosphagen concentrations in working muscle of man. Acta Physiol Scand [Suppl] 358: 1–72

    CAS  Google Scholar 

  15. Sandstedt PER (1981) Representativeness of a muscle biopsy specimen for the whole muscle. Acta Neurol Scand 64: 427–437

    Article  PubMed  CAS  Google Scholar 

  16. Ball M (1982) Metabolic and mechanical correlates of muscle fatigue. M. Sc. thesis, University of Waterloo, Ontario

    Google Scholar 

  17. Tesch P (1980) Muscle fatigue in man with special reference to lactate accumulation during short-term intense exercise. Acta Physiol Scand [Suppl] 480: 1–91

    CAS  Google Scholar 

  18. Kragenings I (1979) Methodology of lactate assay. In: Bossart H, Perret C (eds) Lactate in acute conditions. International Symposium, Basel. Karger, Basel, pp 20–28

    Google Scholar 

  19. Kreisberg RA, Pennington LF, Boshell BR (1970) Lactate turnover and gluconeogenesis in normal and obese humans. Effects of starvation. Diabetes 19: 53–63

    PubMed  CAS  Google Scholar 

  20. Bergmeyer HV (1974) Methods of enzymatic analysis, vol 3, 2nd ed. Academic, New York

    Google Scholar 

  21. Schumer W (1979) Ce-1 metabolism and lactate. In: Bossart H, Perret C (eds) Lactate in acute conditions. International Symposium, Basel. Karger, Basel, pp l–9

    Google Scholar 

  22. Giesecke E, Wallenberg P, Fabritius A (1980) D(-) lactate acid — a physiological isomer in the rat. Experimentia 36: 571

    Article  CAS  Google Scholar 

  23. Leichtweib HR, Schroder H (1981) L-lactate and D-lactate carriers on the fetal and the maternal side of the trophoblast in the isolated guinea pig placenta. Pflugers Arch 390: 80–85

    Article  Google Scholar 

  24. Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance trainging. Clin Physiol 2: 1–12

    Article  PubMed  CAS  Google Scholar 

  25. Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38: 273–291

    Article  PubMed  CAS  Google Scholar 

  26. Lollgen H, Graham TE, Sjogaard G (1980) Muscle metabolites, force and perceived exertion bi-cycling at varying pedal rates. Med Sci Sports 12: 345–351

    CAS  Google Scholar 

  27. Tesch PA, Sharp DS, Daniels WL (1981) Influence of fiber type composition and capillary density on onset of blood lactate accumulation. Int J Sports Med 2: 252–255

    Article  Google Scholar 

  28. Tesch PA, Daniels WL, Sharp DS (1982) Lactate accumulation in muscle and blood during submaximal exercise. Acta Physiol Scand 114: 441–446

    Article  PubMed  CAS  Google Scholar 

  29. Jurkowski JEH, Jones NL, Toews CJ, Sutton JR (1981) Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 51: 1493–1499

    PubMed  CAS  Google Scholar 

  30. Graham TE, Andrew GM (1973) The variability of repeated measurements of oxygen debt in man following a maximal treadmill exercise. Med Sci Sports 5: 73–78

    Article  PubMed  CAS  Google Scholar 

  31. Katch VL, Sady SS, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14: 21–25

    Article  PubMed  CAS  Google Scholar 

  32. Jones NL, Ehrsam RE (1982) The anaerobic threshold. In: Terjung RL (ed) Exercise and sports sciences reviews. Franklin, Philadelphia (Am coll sport med series, vol 10 )

    Google Scholar 

  33. Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. Saunders, Philadelphia

    Google Scholar 

  34. Schopf JW (1978) The evolution of the earliest cells. Sci Am 239: 110–138

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi K, Neely JR (1979) Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44: 166–175

    PubMed  CAS  Google Scholar 

  36. Newsholme EA, Crabtree B (1979) Theoretical principles in the approaches to control of metabolic pathways and their application to glycolysis in muscle. J Mol Cell Cardiol 11: 839–855

    Article  PubMed  CAS  Google Scholar 

  37. Barker WC, Dayhoff MO (1980) Evolutionary and functional relationships of homologous physiological mechanisms. Bioscience 30: 593–600

    Article  CAS  Google Scholar 

  38. Sideli BD, Beland KF (1980) Lactate dehydrogenases of Atlantic hogfish: physiological and evolutionary implications of a primative heart isozyme. Science 207: 769–770

    Article  Google Scholar 

  39. Sjodin B (1976) Lactate dehydrogenase in human skeletal muscle. Acta Physiol Scand [Suppl] 436: 1–82

    CAS  Google Scholar 

  40. Graham TE, Sjogaard G, Lollgen H, Saltin B (1978) NAD in muscle of man at rest and during exercise. Pflugers Arch 376: 35–39

    Article  PubMed  CAS  Google Scholar 

  41. Sacks J, Sacks WC (1937) Blood and muscle lactic acid in the steady-state. Am J Physiol 118: 697–702

    CAS  Google Scholar 

  42. Hirche H, Hombach V, Langohr HD, Wacker V, Busse J (1975) Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis. Pflugers Arch 356: 209–222

    Article  PubMed  CAS  Google Scholar 

  43. Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilization of oxygen — Parts I—III. Proc R Soc Lond [Biol] 96: 438–475

    Article  CAS  Google Scholar 

  44. Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1978) Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol 44: 350–352

    PubMed  CAS  Google Scholar 

  45. Mainwood GW, Worsley-Brown P (1975) The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J Physiol (Lond) 250: 1–22

    CAS  Google Scholar 

  46. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61: 297–434

    Google Scholar 

  47. Barac-Nieto M, Murer H, Kinne R (1982) Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pflugers Arch 392: 366–371

    Article  PubMed  CAS  Google Scholar 

  48. Dubsinsky WP, Racker E (1978) The mechanism of lactate transport in human erythrocytes. J Membr Biol 44: 25–36

    Article  Google Scholar 

  49. Jacobs I, Kaiser P (1982) Lactate in blood, mixed skeletal muscle and FT or ST fibers during cycle exercise in man. Acta Physiol Scand 114: 461–466

    Article  PubMed  CAS  Google Scholar 

  50. McCartney N, Heigenhauser GJF, Sargeant AT, Jones NL (1983) A constant velocity cycle ergometer for the study of dynamic muscle function. J Appl Physiol 55: 212–217

    PubMed  CAS  Google Scholar 

  51. Boobis L, Williams C, Wootton SA (1983) Human muscle metabolism during brief maximal exercise. J Physiol (Lond) 338: 21

    Google Scholar 

  52. Jacobs I, Bar-Or O, Karlsson J, Dotan R, Tesch P, Kaiser P, Inbar O (1982) Changes in muscle metabolites in females with 30 s exhaustive exercise. Med Sci Sports Exerc 14: 457–460

    Article  PubMed  CAS  Google Scholar 

  53. Jacobs I, Tesch PA, Bar-Or O, Karlsson J, Dotan R (1983) Lactate in human skeletal muscle after 10 s and 30 s of supramaximal exercise. J Appl Physiol 55: 365–368

    PubMed  CAS  Google Scholar 

  54. Hultman E, Bergstrom J, McLennan-Anderson N (1967) Breakdown and resynthesis of phosphocreatine and adenosine triphosphate in connection with muscular work in man. Scand J Clin Lab Invest 19: 56–66

    Article  PubMed  CAS  Google Scholar 

  55. Margaria R, Edwards HT, Dill DB (1933) The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 106: 689–715

    CAS  Google Scholar 

  56. Hughes EF, Turner SC, Brooks GA (1982) Effects of glycogen depletion and pedaling speed on “anaerobic threshold.” J Appl Physiol 52: 1598–1607

    PubMed  CAS  Google Scholar 

  57. Graham TE (1978) Oxygen delivery and blood and muscle lactate changes during muscle activity. Can J Appl Sport Sci 3: 153–159

    CAS  Google Scholar 

  58. Graham TE, Wilson BA, Sample M, Van Dijk J, Bonen A (1980) The effects of hypercapnia on metabolic responses to progressive exhaustive work. Med Sci Sports Exerc 12: 278–284

    PubMed  CAS  Google Scholar 

  59. Hagberg JM, Coyle EF, Carroll JE, Miller JM, Martin WH, Brooke MH (1982) Exercise hyper-ventilation in patients with McArdle’s disease. J Appl Physiol 52: 991–994

    PubMed  CAS  Google Scholar 

  60. McGilvery RW (1975) The use of fuels for muscular work. In: Howald H, Poortmans JR (ed). Metabolic adaptation to prolonged physical exercise. Proceedings of the second international symposium on biochemistry of exercise. Magglingen 1973. Birhauser, Basel

    Google Scholar 

  61. Dempsey J A, Thomson JM, Forster HB, Cerney FC, Chosy LW (1975) Hb02 dissociation in man during prolonged work in chronic hypoxia. J Appl Physiol 38: 1022–1029

    PubMed  CAS  Google Scholar 

  62. Pirnay F, Dujardin J, Deroanne R, Petit JM (1971) Muscular exercise during intoxication by carbon monoxide. J Appl Physiol 31: 573–575

    PubMed  CAS  Google Scholar 

  63. Jobsis FF, Stainsby WN (1968) Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 4: 292–300

    Article  PubMed  CAS  Google Scholar 

  64. Welch HG, Bonde-Petersen F, Graham TE, Klausen K, Secher N (1977) Effects of hyperoxia on leg blood flow and metabolism during exercise. J Appl Physiol 42: 385–390

    PubMed  CAS  Google Scholar 

  65. Wilson BA, Stainsby WN (1978) Effects of 02 breathing on RQ, blood flow, and developed tension in in situ dog muscle. Med Sci Sports 10: 167–170

    PubMed  CAS  Google Scholar 

  66. Corsi A, Zatti M, Midris M, Granata AL (1970) In situ oxidation of lactate by skeletal muscle during intermittent exercise. FEBS Lett 11: 65–68

    Article  PubMed  CAS  Google Scholar 

  67. Depocas F, Minaire Y, Chatonnet J (1969) Rates of formation of lactic acid in dogs at rest and during moderate exercise. Can J Physiol Pharmacol 47: 603–610

    Article  PubMed  CAS  Google Scholar 

  68. Hubbard JL (1973) The effect of exercise on lactate metabolism. J Physiol (Lond) 231: 1–18

    CAS  Google Scholar 

  69. Issekutz B, Shaw WAS, Issekutz AC (1976) Lactate metabolism in resting and exercising dogs. J Appl Physiol 40: 312–319

    PubMed  CAS  Google Scholar 

  70. Jorfeldt L (1970) Metabolism of L(+)-lactate in human skeletal muscle during exercise. Acta Physiol Scand [Suppl] 338: 1–102

    CAS  Google Scholar 

  71. Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man. Acta Physiol Scand [Suppl] 455: 1–64

    CAS  Google Scholar 

  72. Hochachka PW, Mommsen TP (1983) Protons and anaerobiosis. Science 219: 1391–1397

    Article  PubMed  CAS  Google Scholar 

  73. Edwards RHT, Clode M (1970) The effect of hyperventilation on the lactacidemia of muscular exercise. Clin Sci 38: 269–276

    PubMed  CAS  Google Scholar 

  74. Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci Mol Med 61: 331–338

    CAS  Google Scholar 

  75. Graham TE, Wilson BA, Sample M, Van Dijk J, Goslin B (1982) The effects of hypercapnia on the metabolic response to steady-state exercise. Med Sci Sports Exerc 14: 286–291

    Article  PubMed  CAS  Google Scholar 

  76. Rizzo A, Gimenez M, Horsky P, Saunier C (1976) Influence d’une atmosphere de C02 a 4% sur le comportement metabolique a l’exercise d’hommes jeunes. Bull Eur Physiopathol Respir 12: 209–219

    PubMed  CAS  Google Scholar 

  77. Graham TE, Wilson BA (1983) Effects of hypercapnia and hyperoxia on metabolism during exercise. Med Sci Sports Exerc (to be published )

    Google Scholar 

  78. Adams RP, Welch HG (1980) Oxygen uptake, acid-base status, and performance with varied in-spired 02 fractions. J Appl Physiol 49: 863–868

    PubMed  CAS  Google Scholar 

  79. Cohen RD (1979) The production and removal of lactate. In: Bossart H, Penet C (eds) Lactate in acute conditions. International symposium, Basel. Karger, Basel, pp 10–19

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graham, T.E. (1984). Measurement and Interpretation of Lactate. In: Löllgen, H., Mellerowicz, H. (eds) Progress in Ergometry: Quality Control and Test Criteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69844-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69844-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13570-8

  • Online ISBN: 978-3-642-69844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics