Skip to main content

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 6 / 6 A))

Abstract

Comparative physiology is the biologic science which begins with man, in order to understand man. To understand man (biologically) means to know how evolution has brought him into existence, to reveal the functions of organs, their mechanisms of operation and their roles as parts of the organism, and to satisfy the human urge to discover the laws of nature and to create order where diversity prevails, whether for the sake of the laws themselves or for the sake of the power that knowledge brings.

“One might say that nature has taken delight in accumulating contradictions.” H. v. Helmholtz

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ali, M.A., Steele, V.J.: Retinomotor responses of the amphipod Gammarus oceanicus from two latitudes to various light intensities and temperatures. Rev. Can. Biol. 20, 665–674 (1961).

    PubMed  CAS  Google Scholar 

  • Alpern, M.: Rhodopsin kinetics in the human eye. J. Physiol. (Lond.) 217, 447–471 (1971).

    CAS  Google Scholar 

  • Apáthy, St.: Analyse der äußeren Körperform der Hirudineen. Mitt. Zool. Stat. Neapel 8, 153 (1888).

    Google Scholar 

  • Apáthy, St. von: Die drei verschiedenen Formen von Lichtzellen bei Hirudineen. Mit Demonstration von Neurofibrillenpräparaten nach der Hämatein- und der Nachvergoldungsmethode. Verh. 5. Congr. Zool. Berlin 1902, 707–728 (1902).

    Google Scholar 

  • Arvanitaki, A., Chalazonitis, N.: Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells of Aplysia). In: Nervous inhibition (ed. W. Florey), pp. 194–231. Oxford-London-New York-Paris: Pergamon Press 1961.

    Google Scholar 

  • Atema, J.: Microtubule theory of sensory transduction. J. Theor. Biol. 38, 181–190 (1973).

    PubMed  CAS  Google Scholar 

  • Autrum, H.: Die Belichtungspotentiale und das Sehen der Insekten (Untersuchungen an Calliphora und Dixippus). Z. Vergl. Physiol. 32, 176–227 (1950).

    Google Scholar 

  • Autrum, H.: Electrophysiological analysis of the visual system in insects. Exp. Cell Res., Suppl. 5, 426–439 (1958).

    Google Scholar 

  • Autrum, H.: Les yeux et la vision des Insectes. In: Traité de zoologie (ed. P. P. Grassé), Vol. VIII, pp. 742–853. Paris: Masson & Cie. 1975.

    Google Scholar 

  • Autrum, H., Thomas, I: Comparative physiology of colour vision in animals. In: Handbook of sensory physiology, Vol.VII/3A (ed. R. Jung), pp.661–692. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. Vergl. Physiol. 48, 357–384 (1964).

    Google Scholar 

  • Barber, V. C., Evans, E. M., Land, M. F.: The fine structure of the eye of the mollusc Pecten maximus. Z. Zellforsch. 76, 295–312 (1967).

    Google Scholar 

  • Barnes, S.N.: Fine structure of the photoreceptor and cerebral ganglion of the tadpole larva of Amaroucium constellatum (Verrill) (Subphylum: Urochordata; Class: Ascidiacea). Z. Zellforsch. 117, 1–16 (1971).

    PubMed  CAS  Google Scholar 

  • Barnes, S.N., Goldsmith, T.H.: Dark adaptation, sensitivity, and rhodopsin level in the eye of the lobster, Homarus. J. Comp. Physiol. 120, 143–159 (1977).

    CAS  Google Scholar 

  • Baumann, F.: Electrophysiological properties of the honey bee retina. In: The compound eye and vision of insects (ed. G. A. Horridge), pp. 53–74. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Baylor, D.A., Fuortes, M. G. F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).

    CAS  Google Scholar 

  • Behrens, M., Krebs, W.: The effect of light-dark adaptation on the ultrastructure of Limulus lateral eye retinular cells. J. Comp. Physiol. 107, 77–96 (1976).

    Google Scholar 

  • Benolken, R.M., Anderson, R.E., Maude, M.B.: Lipid composition of Limulus photoreceptor membranes. Biochim. Biophys. Acta 413, 234–242 (1975).

    PubMed  CAS  Google Scholar 

  • Blaurock, A.E., Stoeckenius, W.: Structure of the purple membrane. Nature (New Biol.) 233, 152–154 (1971).

    CAS  Google Scholar 

  • Boyle, P.R.: Fine structure of the eyes of Onithochiton neglectus (Mollusca: Polyplacophora). Z. Zellforsch. 102, 313–332 (1969).

    PubMed  CAS  Google Scholar 

  • Brown, H.M., Brown, A.M.: Ionic basis of the photoresponse of Aplysia giant neuron: K+ permeability increase. Science 178, 755–756 (1972).

    PubMed  CAS  Google Scholar 

  • Brown, J.E., Coles, J.A., Pinto, L.H.: Effects of injections of calcium and EGTA into the outer segments of retinal rods of Bufo marinus. J. Physiol. (Lond.) 269, 707–722 (1977).

    CAS  Google Scholar 

  • Burkhardt, D., Autrum, H.: Die Belichtungspotentiale einzelner Sehzellen von Calliphora erythrocephala Meig. Z. Naturforsch. 15b, 612–616 (1960).

    CAS  Google Scholar 

  • Burr, A.H., Webster, J.M.: Morphology of the eyespot and description of two pigment granules in the esophageal muscle of a marine nematode, Oncolaimus vesicarius. J. Ultrastruct. Res. 36, 621–632 (1971).

    PubMed  CAS  Google Scholar 

  • Checcucci, A.: Molecular sensory physiology of Euglena. Naturwissenschaften 63, 412–417 (1976).

    PubMed  CAS  Google Scholar 

  • Clark, R.B.: The eyes and the photonegative behaviour of Nephthys (Annelida, Polychaeta). J. Exp. Biol. 33, 461–477 (1956).

    Google Scholar 

  • Collett, T., King, A. J.: Vision during flight. In: The compound eye and vision of insects (ed. G. A. Horridge), pp.437–466. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Cone, R.A.: Rotational diffusion of rhodopsin in the visual receptor membrane. Nature (New Biol.) 236, 39–43 (1972).

    CAS  Google Scholar 

  • Cosens, D., Wright, R.: Light elicited isolation of the complementary visual input systems in white-eye Drosophila. J. Insect Physiol. 21, 1111–1120 (1975).

    PubMed  CAS  Google Scholar 

  • Crescitelli, F: The visual cells and visual pigments of the vertebrate eye. In: Handbook of sensory physiology, Vol.VII/1 (ed. H.J.A. Dartnall), pp.245–363. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Croll, N.A., Riding, I.L., Smith, J.M.: A nematode photoreceptor. Comp. Biochem. Physiol. 42A, 999–1009 (1972).

    Google Scholar 

  • Daemen, F.J.M.: Vertebrate rod outer segment membranes. Biochim. Biophys. Acta 300, 255–288 (1973).

    PubMed  CAS  Google Scholar 

  • Darwin, Ch.: The formation of vegetable mould, through action of worms, with observations on their habits. London 1881.

    Google Scholar 

  • Daumer, K.: Blumenfarben, wie sie die Bienen sehen. Z. Vergl. Physiol. 41, 49–110 (1958).

    Google Scholar 

  • De Valois, R. L., Jacobs, G. H.: Primate color vision. Science 162, 533–540 (1968).

    PubMed  Google Scholar 

  • Dhainaut-Courtois, N.: Sur la présence d’un organe photorécepteur dans le cerveau de Nereis pelagica L. (Annélide polychète). C. R. Acad. Sci. [D] (Paris) 261, 1085–1088 (1965).

    Google Scholar 

  • Dhainaut-Courtois, N.: Étude histologique et ultrastructurale des cellules nerveuses du ganglion cérébral de Nereis pelagica L. (Annélide polychète). Comparaison entre les types cellulaires I–VI et ceux décrits antérieurement chez les Nereidae. Gen. Comp. Endocrinol. 11, 414–443 (1968).

    PubMed  CAS  Google Scholar 

  • Dietz, M.: Erdkröten können UV-Licht sehen. Naturwissenschaften 59, 316 (1972).

    PubMed  CAS  Google Scholar 

  • Dilly, N.: Electron microscope observations of the receptors in the sensory vesicle of the ascidian tadpole. Nature (Lond.) 191, 786–787 (1961).

    Google Scholar 

  • Dilly, P.N.: Studies on the receptors in the cerebral vesicle of the ascidian tadpole. 2. The ocellus. Q. J. Micr. Sci. 105,13–20 (1964).

    Google Scholar 

  • Dilly, P. N.: Studies on the receptors in Ciona intestinalis. III. A second type of photoreceptor in the tadpole larva of Ciona intestinalis. Z. Zellforsch. 96, 63–65 (1969 a).

    PubMed  CAS  Google Scholar 

  • Dilly, P. N.: The structure of a photoreceptor organelle in the eye of Pterotrachea mutica. Z. Zellforsch. 99, 420–429 (1969 b).

    PubMed  CAS  Google Scholar 

  • Dowling, J.E.: Night blindness, dark adaptation and the electroretinogram. Am. J. Ophthalmol. 50, 875–887 (1960).

    PubMed  CAS  Google Scholar 

  • Dowling, J.E., Ripps, H.: Visual adaptation in the retina of the skate. J. Gen. Physiol. 56, 491–520 (1960).

    Google Scholar 

  • Duke-Elder, St.: System of ophthalmology. Vol.1. The eye in evolution. London: H. Kimpton 1958.

    Google Scholar 

  • Eakin, R.M.: Lines of evolution of photoreceptors. In: General physiology of cell specialization (eds. D. Mazia, A. Tyler). New York: McGraw Hill 1963.

    Google Scholar 

  • Eakin, R.M.: Evolution of photoreceptors. Cold Spring Harbor Symp. Quant. Biol. 30, 363–370 (1966).

    Google Scholar 

  • Eakin, R.M.: Evolution of photoreceptors. In: Evolutionary biology, Vol.11 (eds. T. Dobzhansky, M. K. Hecht, W. C. Steere). New York: Appleton-Century-Crofts 1968.

    Google Scholar 

  • Eakin, R.M.: Structure of invertebrate photoreceptors. In: Handbook of sensory physiology, Vol. VII/1 (ed. H. J. A. Dartnall), pp.625–684. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Eakin, R.M., Kuda, A.: Ultrastructure of sensory receptors in ascidian tadpoles. Z. Zellforsch. 112, 287–312(1971).

    PubMed  CAS  Google Scholar 

  • Eakin, R.M., Martin, G.G., Reed, C.T.: Evolutionary significance of fine structure of Archiannelid eyes. Zoomorphologie 88, 1–18 (1977).

    Google Scholar 

  • Ermak, T.H., Eakin, R.M.: Fine structure of the cerebral and pygidial ocelli in Chone ecaudata (Polychaeta: Sabellidae). J. Ultrastruct. Res. 54, 243–260 (1976).

    PubMed  CAS  Google Scholar 

  • Fahrenbach, W. H.: The visual system of the horseshoe crab Limulus polyphemus. Int. Rev. Cytol. 41, 285–349 (1975).

    PubMed  CAS  Google Scholar 

  • Fein, A., De Voe, R.D.: Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance. J. Gen. Physiol. 61, 273–289 (1973).

    PubMed  CAS  Google Scholar 

  • Fein, A., Lisman, J.: Localized desensitization of Limulus photoreceptors produced by light or intracellular calcium ion injection. Science 187, 1044–1096 (1975).

    Google Scholar 

  • Forel, A.: Das Sinnesleben der Insekten. München: E. Reinhardt 1910 (here cit. publication in Recueil Zoologique suisse, 1886).

    Google Scholar 

  • Frisch, K. von: Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5, 142–148 (1949).

    PubMed  CAS  Google Scholar 

  • Frisch, K.von: Tanzsprache und Orientierung der Bienen. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  • Glantz, R.M.: Peripheral versus central adaptation in the crustacean visual system. J. Neurophysiol. 34, 485–492 (1971).

    PubMed  CAS  Google Scholar 

  • Goldsmith, T. H.: The natural history of invertebrate visual pigments. In: Handbook of sensory physiology, Vol. VII/1 (ed. H. J. A. Dartnall), pp.685–719. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Goldsmith, T.H.: Photoreceptor processes: some problems and perspectives. J. Exp. Zool. 194, 89–101 (1975).

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., McReynolds, J.S.: Hyperpolarizing and depolarizing receptor potentials in the scalop eye. Science 165, 309–310 (1969).

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., McReynolds, J.S., Barnes, S.N.: Photoreceptors in primitive chordates: fine structure, hyperpolarizing receptor potentials, and evolution. Science 172, 1052–1054 (1971).

    PubMed  CAS  Google Scholar 

  • Gribakin, F.G., Govardovskii, V.L: The role of the photoreceptor membrane in photoreceptor optics. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.215–236. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Hagins, W.A.: Electrical signs of information flow in photoreceptors. Cold Spring Harbor Symp. Quant. Biol. 30, 403–418 (1965).

    PubMed  CAS  Google Scholar 

  • Hagins, W.A., Liebman, P. A.: The relationship between photochemical and electrical processes in living squid photoreceptors. Abstr. Biophys. Soc. Ann. Meeting ME 6 (1963).

    Google Scholar 

  • Hagins, W.A., Yoshikami, S.: Ionic mechanisms in excitation of photoreceptors. Ann. N. Y. Acad. Sci. 264, 314–325 (1975).

    PubMed  CAS  Google Scholar 

  • Hamdorf, K.: Correlation between the concentration of visual pigment and sensitivity in photoreceptors. Verh. Dtsch. Zool. Ges. 64, 148–156 (1970).

    Google Scholar 

  • Hamdorf, K., Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. Comp. Physiol. 86, 281–292 (1973).

    Google Scholar 

  • Hamdorf, K., Schwemer, J.: Photoregeneration and the adaptation process in insect photoreceptors. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.263–289. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Hamdorf, K., Schwemer, J., Gogala, M.: Insect visual pigment sensitive to ultraviolet light. Nature (Lond.) 231, 458–459 (1971).

    CAS  Google Scholar 

  • Hara, T., Hara, R.: Cephalopod retinochrome. In: Handbook of sensory physiology, Vol. VII/1 (ed. H. J. A. Dartnall), pp.721–746. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Hartline, H.K.: A quantitative and descriptive study of the electrical response to illumination of the arthropod eye. Am. J. Physiol. 83, 466–483 (1928).

    Google Scholar 

  • Hartline, H.K., Graham, C.H.: Nerve impulses from single receptors in the eye of Limulus. Proc. Soc. Exp. Biol. Med. 29, 613–615 (1932a).

    Google Scholar 

  • Hartline, H. K., Graham, C. H.: Nerve impulses from single receptors in the eye. J. Cell. Comp. Physiol. 1, 277–295 (1932 b).

    Google Scholar 

  • Hartline, H. K., Ratliff, F.: Inhibitory interaction in the retina of Limulus. In: Handbook f sensory physiology, Vol.VII/2 (ed. M.G.F. Fuortes), pp.381–447. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Hartline, H.K., Wagner, H.G., MacNichol, E. F.: The peripheral origin of nervous activity in the visual system. Cold Spring Harbor Symp. Quant. Biol. 17, 125–141 (1952).

    PubMed  CAS  Google Scholar 

  • Hays, D., Goldsmith, T. H.: Microphotometry of the visual pigment of the spider crab, Libinia emarginata. Z. Vergl. Physiol. 65, 218–232 (1969).

    Google Scholar 

  • Hermans, C.O., Eakin, R. M.: Fine structure of the cerebral ocelli of a sipunculid, Phascolosoma agassizii. Z. Zellforsch. 100, 325–339 (1969).

    PubMed  CAS  Google Scholar 

  • Hermans, C.O., Eakin, R.M.: Sipunculan ocelli: fine structure in Phascolosoma agassizii. Proceed. Internat. Symp. Biol. Sipuncula and Echiura I (eds. M.E. Rice, M. Todorovič), pp.229–237. Kotor (1970).

    Google Scholar 

  • Hermans, C.O., Eakin, R.M.: Fine structure of the eyes of an alciopid polychaete, Vanadis tagensis (Annelida). Z. Morph. Tiere 79, 245–267 (1974).

    Google Scholar 

  • Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. I. Die Organe der Lichtempfindung bei den Lumbriciden. Z. Wiss. Zool. 61, 393–419 (1896).

    Google Scholar 

  • Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. II. Die Augen der Plathelminthen. Z. Wiss. Zool. 62, 527–582 (1897a).

    Google Scholar 

  • Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. III. Die Sehorgane der Hirudineen. Z. Wiss. Zool. 62, 671–707 (1897b).

    Google Scholar 

  • Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. V. Die Augen der polychäten Anneliden. Z. Wiss. Zool. 65, 446–516 (1899).

    Google Scholar 

  • Hildebrand, E., Dencher, N.: Two photosystems controlling behavioural responses of Halobacterium halobium. Nature (Lond.) 257, 46–48 (1975).

    CAS  Google Scholar 

  • Home, E.M.: Centrioles and associated structures in the retinula cells of insect eyes. Tissue Cell 4, 227–234 (1972).

    PubMed  CAS  Google Scholar 

  • Home, E.M.: Ultrastructural studies of development and light-dark adaptation of the eye of Coccinella septempunctata L., with particular reference to ciliary structures. Tissue Cell 7, 703–722 (1975).

    PubMed  CAS  Google Scholar 

  • Horridge, G. A., Meinertzhagen, I. A.: The accuracy of the pattern of the first and second order neurons of the visual system of Calliphora. Proc. R. Soc. Lond. (Biol.) 175, 83–94 (1970).

    CAS  Google Scholar 

  • Hubbard, R., St. George, R.C.C.: The rhodopsin system of the squid. J. Gen. Physiol. 41, 501–528 (1958).

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Yamada, E.: The degradation of the photoreceptor outer segment within the pigment epithelial cell of the rat retina. J. Electron Microsc. (Tokyo) 19, 85–91 (1970).

    CAS  Google Scholar 

  • Itaya, S.J.: Rhabdom changes in the shrimp, Palaemonetes. Cell Tissue Res. 166, 265–273 (1976).

    PubMed  CAS  Google Scholar 

  • Jacobs, G.H.: Spectral sensitivity and color vision of the squirrel monkey. J. Comp. Physiol. Psychol. 56, 616–621 (1963).

    PubMed  CAS  Google Scholar 

  • Jones, C., Nolte, J., Brown, J.E.: The anatomy of the median ocellus of Limulus. Z. Zellforsch. 118, 297–309 (1971).

    PubMed  CAS  Google Scholar 

  • Jörschke, H.: Die Fazettenaugen der Orthopteren und Termiten. Z. Wiss. Zool. 111, 153–280 (1914).

    Google Scholar 

  • Kennedy, D.: Neural photosensitivity in Mactra. Biol. Bull. 115, 338 (1958).

    Google Scholar 

  • Kennedy, D.: Neural photoreception in a lamellibranch mollusc. J. Gen. Physiol. 44, 277–299 (1960).

    PubMed  CAS  Google Scholar 

  • Kennedy, D.: Physiology of photoreceptor interneurons in the abdominal nerve cord of the crayfish. J. Gen. Physiol. 46, 551–572 (1963).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K.: Absorption properties of photopigment in single rods, cones and rhabdomeres. In: Processing of optical data by organisms and machines (ed. W. Reichardt), pp. 116–136. New York-London: Academic Press 1969.

    Google Scholar 

  • Krasne, F.B., Lawrence, P.A.: Structure of the photoreceptors in the compound eyespots of Branchiomma vesiculosum. J. Cell Sci. 1, 239–248 (1966).

    Google Scholar 

  • Kreithen, M.L., Eisner, Th.: Ultraviolet light detection by the homing pigeon. Nature 272, 347–348 (1978).

    PubMed  CAS  Google Scholar 

  • Krohn, W.: Nachträgliche Beobachtungen über den Bau des Auges der Cephalopoden. Nova Acta Leopoldina (Halle) 19, 41 (1839–42).

    Google Scholar 

  • Krukenberg, C.F.W.: Über die Stäbchenfarbe der Cephalopoden. Unters. Physiol. Inst. Univ. Heidelberg 2, 58 (1882).

    Google Scholar 

  • Kühn, A.: Über den Farbensinn der Bienen. Z. Vergl. Physiol. 5, 762–800 (1927).

    Google Scholar 

  • Kühn, A., Pohl, R.: Dressurfähigkeit der Bienen auf Spektrallinien. Naturwissenschaften 9, 738–740 (1921).

    Google Scholar 

  • Lamarck, J.-B.: Histoire naturelle des animaux sans vertèbres, Vols. 1–7 (1815–1822).

    Google Scholar 

  • Larimer, J.L.: The presence of a functional caudal photoreceptor in blind cavernicolous crayfish. Nature (Lond.) 210, 204–205 (1966).

    CAS  Google Scholar 

  • Larimer, J.L., Trevino, D.L., Asby, E. A.: A comparison of spectral sensitivities of caudal photoreceptors of epigeal and cavernicolous crayfish. Comp. Biochem. Physiol. 19, 409–415 (1966).

    PubMed  CAS  Google Scholar 

  • Lasansky, A., Fuortes, M. G. F.: The site of origin of electrical responses in visual cells of the leech, Hirudo medicinalis. J. Cell Biol. 42, 241–252 (1969).

    PubMed  CAS  Google Scholar 

  • Lasansky, A., Marchiafava, P. L.: Light induced resistance changes in retinal rods and cones of the tiger salamander. J. Physiol. (Lond.) 236, 171–191 (1974).

    CAS  Google Scholar 

  • Leedale, G.F.: Euglenoid flagellates. Englewood Cliffs, N. J.: Prentice Hall 1967.

    Google Scholar 

  • Liebman, P. A.: In situ spectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).

    PubMed  CAS  Google Scholar 

  • Liebman, P. A.: Light-dependent Ca++ content of rod outer segment disc membranes. Invest. Ophthalmol. 13, 700–701 (1974).

    CAS  Google Scholar 

  • Liebman, P.A.: Birefringence, dichroism and rod outer segment. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 199–214. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Liebman, P.A., Entine, G.: Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 185, 457–458 (1974).

    PubMed  CAS  Google Scholar 

  • Lin, D.K., Niece, R.L., Fitch, W.M.: The properties and amino-acid sequence of cytochrome c from Euglena gracilis. Nature (London) 241, 533–535 (1973).

    CAS  Google Scholar 

  • Lubbock, J.: Ants, bees, and wasps. (New Edition by Myers, J.G., New York: Dutton and Co. 1929) 1882.

    Google Scholar 

  • Malmo, R.B., Grether, W.F.: Further evidence of red blindness (protanopia) in Cebus monkey. J. Comp. Psychol. Physiol. 40, 143–147 (1947).

    CAS  Google Scholar 

  • Mason, W.T., Fager, R.S., Abrahamson, E.W.: Characterization of the lipid composition of squid rhabdome outer segments. Biochim. Biophys. Acta 306, 67–73 (1973).

    PubMed  CAS  Google Scholar 

  • Mason, W.T., Fager, R.S., Abrahamson, E.W.: Ion fluxes in disk membranes of retinal rod outer segments. Nature (London) 247, 562–563 (1974).

    CAS  Google Scholar 

  • Mayr, E.: Wie weit sind die Grundprobleme der Evolution gelöst? In: Evolution. Nova Acta Leopoldina (Halle) 42, 171–177 (1975).

    Google Scholar 

  • McReynolds, J.S., Gorman, A.L.F.: Membrane conductances and spectral sensitivities of Pecten photoreceptors. J. Gen. Physiol. 56, 376–391 (1970a).

    PubMed  CAS  Google Scholar 

  • McReynolds, J.S., Gorman, A.L.F.: Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J. Gen. Physiol. 56, 392–406 (1970 b).

    PubMed  CAS  Google Scholar 

  • McReynolds, J.S., Gorman, A.L.F.: Hyperpolarizing photoreceptors in the eye of a primitive chordate, Salpa democratica. Vision Res. 15, 1181–1186 (1975).

    PubMed  CAS  Google Scholar 

  • Menzel, R.: Polarisation sensitivity in insect eyes with fused rhabdoms. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 372–387. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Metcalf, M.M.: The eye of Salpa. Mem. Biol. Lab. Johns Hopkins Univ. 2, 305–396 (1893).

    Google Scholar 

  • Meyer-Rochow, V.B.: The eyes of Creophilus erythrocephalus F. and Sartallus signatus Sharp (Staphy-linidae: Coleoptera). Light-, interference-, scanning electron-, and transmission electron microscope examinations. Z. Zellforsch. 133, 59–86 (1972).

    PubMed  CAS  Google Scholar 

  • Mote, M. I.: Polarization sensitivity: phenomenon independent of stimulus intensity or state of adaptation in retinular cells of the crabs Carcinus and Callinectes. J. Comp. Physiol. 90, 389–403 (1974).

    Google Scholar 

  • Nakao, T.: On the fine structure of the Amphioxus photoreceptor. Tohoku J. Exp. Med. 82, 349–369 (1964).

    PubMed  CAS  Google Scholar 

  • Nolte, J., Brown, J.E.: Electrophysiological properties of cells in the median ocellus of Limulus. J. Gen. Physiol. 59, 167–185 (1972).

    PubMed  CAS  Google Scholar 

  • Norman, R. A., Werblin, F. S.: Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. J. Gen. Physiol. 63, 37–61 (1974).

    Google Scholar 

  • Oesterheld, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol.) 233, 149–152 (1971).

    Google Scholar 

  • Paulsen, R., Schwemer, J.: Studies on the insect visual pigment sensitive to ultraviolet light: retinal as the chromophoric group. Biochem. Biophys. Acta 283, 520–529 (1972).

    PubMed  CAS  Google Scholar 

  • Pettigrew, G. W.: The amino acid sequence of cytochrome c from Euglena gracilis. Nature (Lond.) 241, 531–533 (1973).

    CAS  Google Scholar 

  • Plate, L.: Allgemeine Zoologie und Abstammungslehre, Vol.II. Jena: G. Fischer 1924.

    Google Scholar 

  • Poo, M., Cone, R.A.: Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (Lond.) 247, 438–441 (1974).

    CAS  Google Scholar 

  • Prosser, C. L.: Action potentials in the nervous system of the crayfish. II. Responses to illumination of the eye and caudal ganglion. J. Cell. Comp. Physiol. 4, 363–377 (1934).

    Google Scholar 

  • Rao, G., Rao, P.K.: A metasomatic neural photoreceptor in the scorpion. J. Exp. Biol. 58, 189–196 (1973).

    Google Scholar 

  • Rüppel, H.: Membrane structure and transduction mechanism of visual receptors. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.499–523. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Rushton, W.A.H.: Rhodopsin measurement and dark adaptation in a subject deficient in cone vision. J. Physiol. (Lond.) 156, 193–205 (1961).

    CAS  Google Scholar 

  • Rushton, W.A.H., Powell, D.S.: The rhodopsin content and the visual threshold of human rods. Vision Res. 12, 1073–1081 (1972).

    PubMed  CAS  Google Scholar 

  • Schultze, M.: Untersuchungen über die zusammengesetzten Augen der Krebse und Insekten. Bonn: M.Cohen Co. 1868.

    Google Scholar 

  • Shaw, S.R.: Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9, 1031–1041 (1969).

    PubMed  CAS  Google Scholar 

  • Smith, D.S.: Insect Cells. Their Structure and Function. Edinburgh: Oliver Boyd 1968.

    Google Scholar 

  • Snyder, A.W., Laughlin, S.B.: Dichroism and absorption by photoreceptors. J. Comp. Physiol. 100, 101–116 (1975).

    Google Scholar 

  • Stark, W.S., Zitzmann, W.G.: Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation in Drosophila. J. Comp. Physiol. 105, 15–27 (1976).

    CAS  Google Scholar 

  • Stavenga, D.G., Zantema, A., Kuiper, J.W.: Rhodopsin processes and the function of the pupil mechanisms in flies. In: Biochemistry and physiology of visual pigments (ed. H. Langer), pp.175–179. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Stieve, H.: On the ionic mechanisms responsible for the generation of the electrical response of light sensitive cells. Mosbacher Coll. Ges. Biol. Chemie 25, 79–105 (1974).

    CAS  Google Scholar 

  • Stieve, H.: Steuert Calcium die Leitfähigkeit der Arthropoden-Sehzellmembran bei der Erregung? Verh. Dtsch. Zool. Ges. 67, 19–23 (1975).

    Google Scholar 

  • Tominaga, Y., Kabuta, H.: Fine structure of the compound eye of a ladybug, Harmonia axigridis. Fukuoka Univ. Sci. Rep. 2, 87–99 (1973).

    Google Scholar 

  • Tomita, T.: Light induced potential and resistance changes in vertebrate photoreceptors. In: Handbook of sensory physiology Vol. VII/2, (ed. M.G.F. Fuortes), pp.483–511. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Tomita, T., Kaneko, A., Murakami, M., Pautler, E.L.: Spectral response curves of single cones in the carp. Vision Res. 7, 519–531 (1967).

    PubMed  CAS  Google Scholar 

  • Toyoda, I.L, Shapley, R.M.: The intracellularly recorded response in the scallop eye. Biol. Bull. 133, 490 (1967).

    Google Scholar 

  • Vanfleteren, J.R., Coomans, A.: Photoreceptor evolution and phylogeny. Z. Zool. Syst. Evolutionsforsch. 14, 157–169 (1976).

    Google Scholar 

  • Vinnikov, Y.A.: Principles of structural, chemical, and functional organization of sensory receptors. Cold Spring Harbor Symp. Quant. Biol. 30, 293–299 (1966).

    Google Scholar 

  • Vinnikov, Y.A.: Special senses. In: The structure and function of nervous tissue, Vol.11, (ed. G.H. Bourne), pp.265–392. New York: Academic Press 1969.

    Google Scholar 

  • Vinnikov, Y.A.: Sensory reception. Cytology, molecular mechanisms, and evolution. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Wachmann, E., Hennig, A.: Centrioles and development of the compound eye in Megachile rotundata (F.) (Hymenoptera, Apidae). Z. Morphol. Tiere 77, 337–344 (1974).

    Google Scholar 

  • Waterman, T.H.: Expectation and achievement in comparative physiology. J. Exp. Zool. 194, 309 – 343 (1975).

    PubMed  CAS  Google Scholar 

  • Waterman, T.H., Fernández, H.R., Goldsmith, T.H.: Dichroism of photosensitive pigment in the rhabdoms of the crayfish Orconectes. J. Gen. Physiol. 54, 415–432 (1969).

    PubMed  CAS  Google Scholar 

  • Wehner, R., Goldsmith, T.H.: Restrictions on translational diffusion of metarhodopsin in the membranes of a rhabdomeric photoreceptor. Biol. Bull. 149, 450 (1975).

    Google Scholar 

  • Weiler, M., Virmaux, N., Mandel, P.: Role of light and rhodopsin phosphorylation in control permeability of retinal rod outer segment disks to Ca2+. Nature (Lond.) 256, 68–70 (1975).

    Google Scholar 

  • White, R.H.: The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J. Exp. Zool. 166, 405–426 (1967).

    PubMed  CAS  Google Scholar 

  • White, R.H.: The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. III. Multivesicular bodies and protein uptake. J. Exp. Zool. 169, 261–278 (1968).

    PubMed  CAS  Google Scholar 

  • White, R.H., Lord, E.: Diminution and enlargement of the mosquito rhabdom in light and darkness. J. Gen. Physiol. 65, 583–598 (1975).

    PubMed  CAS  Google Scholar 

  • Wilkens, L.A., Larimer, J.L.: A survey of abdominal CNS photoreceptive interneurons in the decapod Crustacea. Am. Zool. 14, 1280 (1974).

    Google Scholar 

  • Wilkens, L.A., Larimer, J.L.: Photosensitivity in the sixth abdominal ganglion of decapod Crustacea: a comparative study. J. Comp. Physiol. 106, 69–75 (1976).

    Google Scholar 

  • Willemous-Suhm, R. von: On some Atlantic Crustacea from the “Challenger” expedition. Trans. Linn. Soc. (2) 1, 23–59 (1875).

    Google Scholar 

  • Yanase, T., Sakamoto, S.: Fine structure of the visual cells of the dorsal eye in molluscan, Onchidium verrulatum. Zool. Mag. 74, 238–242 (1965).

    Google Scholar 

  • Yoshikami, S., Hagins, W.A.: Ionic basis of dark current and photocurrent of retinal rods. Biophys. J. 10, 60a (1971).

    Google Scholar 

  • Yoshikami, S., Hagins, W.A.: Control of the dark current in vertebrate rods and cones. In: Biochemistry and physiology of visual pigments (ed. H. Langer), pp.245–255. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Yoshizawa, T.: The behaviour of visual pigments at low temperatures. In: Handbook of sensory physiology, Vol.VII/1, (ed. H.J.A. Dartnall), pp.146–179. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Young, R.W.: The renewal of photoreceptor outer segments. J. Cell Biol. 33, 61–72 (1967).

    PubMed  CAS  Google Scholar 

  • Young, R.W.: Passage of newly formed protein through the connecting cilium of retinal rods in the frog. J. Ultrastruct. Res. 23, 462–473 (1968).

    PubMed  CAS  Google Scholar 

  • Young, R.W.: A difference between rods and cones in the renewal of outer segment protein. Invest. Ophthalmol. 8, 222–231 (1969).

    PubMed  CAS  Google Scholar 

  • Young, R.W.: Shedding of discs from rod outer segments in the rhesus monkey. J. Ultrastruct. Res. 34, 110–203 (1971a).

    Google Scholar 

  • Young, R.W.: The renewal of rod and cone outer segments in the rhesus monkey. J. Cell Biol. 49, 303–318 (1971b).

    PubMed  CAS  Google Scholar 

  • Zinkler, D.: Zum Lipidmuster der Photorezeptoren von Insekten. Verh. Dtsch. Zool. Ges. 67, 28–32 (1975).

    Google Scholar 

  • Zwicky, K.T.: A light response in the tail of Urodacus, a scorpion. Life Sci. 7, 257–262 (1968).

    PubMed  CAS  Google Scholar 

  • Zwicky, K.T.: The special sensitivity of the tail of Urodacus, a scorpion. Experientia 26, 317 (1970).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Autrum, H. (1979). Introduction. In: Autrum, H. (eds) Comparative Physiology and Evolution of Vision in Invertebrates. Handbook of Sensory Physiology, vol 7 / 6 / 6 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66999-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66999-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67001-5

  • Online ISBN: 978-3-642-66999-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics