Skip to main content

Abstract

The function g(p) of the complex variable p defined by the integral

$$g(p) = \int\limits_0^\infty {f(t)e^{ - pt} dt}$$

is called the one sided Laplace transform of f(t) where f(t) is a function of the real variable t,(0 < t < ∞) which is integrable in every finite interval. If the integral converges at a point p = p0, then it converges for every p such that Re p > Re p0. The behavior of the integral (1) in the p-plane may be one of the following:

  1. (a)

    Divergent everywhere

  2. (b)

    Convergent everywhere

  3. (c)

    There exists a number 3 such that (1) converges, when Re p > β and diverges when Re p < β. The number β which is the greatest lower bound of Re p for the set of all p’s in the p-plane at which (1) converges is called the abscissa of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Churchill, R. V., 1958. Operational Mathematics. McGraw-Hill.

    MATH  Google Scholar 

  • Doetsch, G., 1950–1956. Handbuch der Laplace Transformation 3 vols. Verlag Birkhauser, Basel.

    Google Scholar 

  • Doetsch, G., 1961. Guide to the Application of Laplace Transforms. Von Nostrand.

    Google Scholar 

  • Doetsch, G., 1947. Tabellen zur Laplace Transformation. Springer Verlag.

    MATH  Google Scholar 

  • Erdelyi, A. et al. 1952. Tables of Integral Transforms, Vol. 1. McGraw-Hill, 1954.

    Google Scholar 

  • McLachlan, N. W. and Humbert, P. 1950. Formulaires pour le calcul symbolique. Gauthier-Villars.

    Google Scholar 

  • Nixon, F. E. 1960. Handbook of Laplace Transformation. Prentice Hall.

    MATH  Google Scholar 

  • Roberts, G. E. and H. Kaufmann, 1966. Tables of Laplace Transforms. W. B. Saunders Co.

    Google Scholar 

  • Sneddon, I. N. 1972. The Use of Integral Transforms. McGraw-Hill.

    MATH  Google Scholar 

  • Widder, D. V., 1971. An Introduction to Transform Theory. Academic Press.

    MATH  Google Scholar 

  • Widder, D. V., 1941. The Laplace Transform. Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Oberhettinger, F., Badii, L. (1973). Laplace Transforms. In: Tables of Laplace Transforms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65645-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65645-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06350-6

  • Online ISBN: 978-3-642-65645-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics