Skip to main content

Spatial and Temporal Controls on the Formation of Phosphate Deposits - A Review

  • Chapter
Phosphate Minerals

Abstract

Phosphorus is present in most rocks in minor to trace quantities ranging from an average P2O5 content of 0.04% in sandstone to 0.4% in intermediate igneous rocks (McKelvey 1973). It is only in phosphate rock that the P2O5 content is high enough for it to constitute a phosphate ore, attaining values as high as 40% P2O5 1 in some rocks. The lower limit of what is designated a phosphate rock depends on the nature of the rock and the available technology but rocks with phosphate contents as low as 4% P2O5 may constitute a phosphate rock in some circumstances. Phosphate rock occurs in deposits ranging in size from a few tons to many billions of tons. The phosphate is almost invariably in the form of apatite — generally fluorapatite Ca5(PO4)3F, or carbonate fluorapatite which Altschuler (1973) represents by the approximate formula Ca10(PO4)6−x(CO3)x(F, OH)2+x. Less commonly it occurs as minerals such as crandallite (CaAl3(PO4)2(OH)5 • H2O), vivianite (Fe3(PO4)2 • 8H2O), brushite (CaHPO4 • 2H2O), and whitlockite (Ca3(PO4)2). Most of these and other similar minerals form as secondary weathering products (Altschuler 1973) and seldom constitute an economic-phosphate deposit in their own right. The weathering of phosphate deposits is not only scientifically interesting, it can also be economically important, for many deposits are markedly upgraded by weathering. In some cases the phosphate is remobilized by weathering, then reprecipitated to form a deposit of secondary phosphate or phoscrete. In other instances the upgrading of the deposits results from the leaching of more soluble components, especially carbonates, to leave a residual phosphate. However, this paper will not be concerned with the nature and distribution of these residual or weathered deposits to any extent but will focus on the primary deposits of which there are three main types — igneous, guano, and sedimentary. This paper will examine the spatial, and where possible the temporal distribution of these three types. The sedimentary deposits will be examined in greater detail, not only because of their complexity, wide distribution and great scientific importance, but also because they provide the majority of current world phosphate rock production and most of the world phosphate rock reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aharon P (1982) 13C/12C isotope ratio variations over the last 105 yr in a New Guinea coral-reef en­vironment: Implications for the fertility shifts of the tropical ocean. In: Galbally IW, Freney J (eds) The cycling of carbon nitrogen sulfur and phosphorus in the terrestrial and aquatic ecosystems. Austral Acad Sei, Canberra, p 133–142

    Google Scholar 

  • Altschuler ZS (1973) The weathering of phosphate deposits - geochemical and environmental aspects. In: Griffith EJ, Beeton A, Spencer JM, Mitchell DT (eds) Environmental phosphorus handbook. Wiley, New York, p 33–96

    Google Scholar 

  • Arthur MA (1981) The carbon cycle: Controls on atmospheric C02 and climate in the geological past. In: Berger WH, Crowell JC (eds) Pre-Pleistocene climates. Nat Res Council, Washington

    Google Scholar 

  • Arthur MA, Jenkyns HC (1981) Phosphorites and paleoceanography. Oceanol Acta, Proc 26th Int Geol Congr, Paris, p 83–96

    Google Scholar 

  • Banerjee DM (1971) Precambrian stromatolitic phosphorite of Udaipur. Rajsthan, India, Geol Soc Am Bull 82:2319–2330

    Article  Google Scholar 

  • Baturin GN, Dubinchuk VT (1979) Microstructure of oceanic phosphorites. Nauka, Moscow, p 198 (in Russian)

    Google Scholar 

  • Baturin GN, Merkulova AV, Chalov PI (1972) Radiometric evidence for recent formation of phosphatic nodules in marine shelf sediments. Marine Geol 13:M37-M41

    Article  Google Scholar 

  • Bentor YK (1980) Marine phosphorites. Soc Econom Palaeontol Mineral, Tulsa, Spec Pub, p 29

    Google Scholar 

  • Birch GF (1980) A model of penecontemporaneous phosphatization by diagenetic and authigenic mechanisms from the western margin of Southern Africa. Soc Econom Paleontol Mineral, Tulsa, Spec Pub 29:79–100

    Google Scholar 

  • Bloomfield K (1973) Economic aspects of Uganda carbonatite complexes. Overseas Geol Miner Res 41:139–167

    Google Scholar 

  • Bourrouilh FG (1980) Phosphates, sols bauxitiques et karsts dolomitiques du Centre et SW Pacifique Comparisons sedimentologiques et geochimiques. BRGM, p 113–128

    Google Scholar 

  • Burnett WC (1977) Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geol Soc Am Bull 88:813–823

    Article  Google Scholar 

  • Burnett WC (1980) Oceanic phosphate deposits. In: Sheldon RP, Burnett WC (eds) Fertilizer mineral potential in Asia and the Pacific. Resour Syst Inst, Honolulu, p 119–144

    Google Scholar 

  • Burnett WC, Veeh HH (1977) Uranium-series disequilibrium studies on phosphorite nodules from the west coast of S America. Geochim Cosmochim Acta 41:755–764

    Article  Google Scholar 

  • Bushinski GI (1969) Old phosphorites of Asia and their genesis. Israel Progr Sci Transl, Jerusalem, p 266

    Google Scholar 

  • Cook PJ (1976a) Sedimentary phosphate deposits. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits. Elsevier, Amsterdam 7:505–535

    Google Scholar 

  • Cook PJ (1976b) Georgina Basin phosphatic province, Queensland and Northern Territory - Regional geology. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea. Aust Inst Min Met Mon 5 (4):245–250

    Google Scholar 

  • Cook PJ (1982) Cambrian palaeogeography of Australia and opportunities for petroleum exploration. APE A J 22 (l):42–64

    Google Scholar 

  • Cook PJ, McElhinny MW (1979) A re-evaluation of the spatial and temporal distribution of sedimen­tary phosphate deposits in the light of plate tectonics. Econ Geol 74:315–330

    Article  Google Scholar 

  • Cook PJ, Shergold JH (eds) (1979) Proterozoic-Cambrian phosphorites. ANU, Canberra, p 106

    Google Scholar 

  • Cook PJ, Shergold JH (1980) Proterozoic and Cambrian phosphorites of Asia and Australia - a prog­ress report. In: Sheldon RP, Burnett WC (eds) Fertilizer mineral potential in Asia and the Pacific. Res Syst Inst, Honolulu, p 207–223

    Google Scholar 

  • D’Anglejan BF (1967) Origin of marine phosphorites off Baja California, Mexico. Mar Geol 5:15–44

    Article  Google Scholar 

  • Deans T (1968) Exploration for apatite deposits associated with carbonatites and pyroxenites. Miner Res Develop Ser, UN, New York 32:109–119

    Google Scholar 

  • De Keyser F, Cook PJ (1972) Geology of the Middle Cambrian phosphorites and associated sediments of northwestern Queensland. Bur Min Res Aust Bull 138:79

    Google Scholar 

  • Elgueta AS (1981) Sedimentological study of the Western Zone of the Lady Annie phosphate deposit, Queensland, Australia. M Sc Thesis, Australian National University, p 238

    Google Scholar 

  • Erdosh G (1979) The Ontario carbonatite province and its phosphate potential. Econ Geol 74:331–338

    Article  Google Scholar 

  • Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. Soc Econ Paleontol Mineral, Spec Pub 25:19–50

    Google Scholar 

  • Frakes LA (1979) Climates throughout geologic time. Elsevier, Amsterdam, p 310

    Google Scholar 

  • Freas DH, Eckstrom CL (1968) Areas of potential upwelling and phosphorite deposition during Tertiary, Mesozoic and late Palaeozoic time. UN Miner Res Develop Ser, UN, New York 32:228–238

    Google Scholar 

  • Gimmel’Farb BM (1958) Regularity of the tectonic distribution of phosphorite deposits in the USSR. Izdetel’stvo, Moscow, 1 (in Russian)

    Google Scholar 

  • Gittins J, Macintyre RM, York D (1967) The ages of carbonatite complexes in eastern Canada. Can J Earth Sci 4:651–655

    Article  Google Scholar 

  • Gulbrandsen RA (1969) Physical and chemical factors in the formation of marine apatite. Econ Geol 64:365–382

    Article  Google Scholar 

  • Howard PF (1972) Exploration for phosphorite in Australia - a case history. Econ Geol 64:365–382

    Google Scholar 

  • Howard PF (1979) Phosphate. Econ Geol 74:192–194

    Article  Google Scholar 

  • Howard PF, Cooney AM (1976) D Tree phosphate deposit, Georgina Basin, Queensland. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea. Aust Inst Min, Metal Mon (5) 4:265–273

    Google Scholar 

  • Howard PF, Hough MJ (1979) On the geochemistry and origin of the D Tree, Wonarah, and Sherrin Creek phosphorite deposits of the Georgina Basin, Northern Territory. Econ Geol 74:260–284

    Article  Google Scholar 

  • Hutchinson GE (1950) The biogeochemistry of vertebrate excretion. Am Mus Nat Hist Bull 96:554

    Google Scholar 

  • Ilyin AV, Ratnikova GI (1981) Primary, bedded, structureless phosphorite of the Khubsugul Basin, Mongolia. J Sed Petrol 51 (4):1215–1222

    Google Scholar 

  • Jenkyns HC (1980) Cretaceous anoxic events: From continents to oceans. J Geol Soc (Lond) 137:171–188

    Article  Google Scholar 

  • Kazakov AV (1938) The phosphorite facies and the genesis of phosphorites. Int Geol Congr 17th Session, Moscow, p 95–113

    Google Scholar 

  • Kolodny Y (1969) Are marine phosphorites forming today? Nature 224:1017–1019

    Article  Google Scholar 

  • Kolodny Y (1981) Phosphorites. In: Emiliani C (ed) The sea. Wiley, New York 7:981–1023

    Google Scholar 

  • Krajewski KP (1981) Phosphate microstromatolites in the High-Tatric Albian limestones in the Polish Tatra Mts. Bull R’Acad Pol Sci 29 (2): 175

    Google Scholar 

  • Lee AIN (1980) Fertilizer mineral occurrences in the Asia-Pacific region. East West Centre, Honolulu, p 156

    Google Scholar 

  • Love JD (1964) Uraniferous phosphatic lake beds of Eocene age in intermontaine basins of Wyoming and Utah. US Geol Surv Prof Paper 474-E: 1–66

    Google Scholar 

  • McKelvey VE (1967) Phosphate deposits. US Geol Surv Bull 1252-D:21

    Google Scholar 

  • McKelvey VE (1973) Abundance and distribution of phosphorus in the lithosphere. In: Griffith EJ, Beeton A, Spencer JM, Mitchell DT (eds) Environmental phosphorus handbook, Wiley, New York, p 13–32

    Google Scholar 

  • McKelvey VE, Swanson RW, Sheldon RP (1953) The Permian phosphorite deposits of the Western United States. Int Geol Congr 19th Session, Algiers 11:45–65

    Google Scholar 

  • Mansfield GR (1927) Geography, geology and mineral resources of part of southeast Idaho. US Geol Surv, Prof Paper 152:453

    Google Scholar 

  • Marsh JS (1973) Relationships between transform directions and alkaline igneous rock lineaments in Africa and South America. Earth Planet Sci Let 18:317–323

    Article  Google Scholar 

  • Marshall JF, Cook PJ (1980) Petrology of iron- and phosphorus-rich nodules from the E Australian continental shelf. J Geol Soc (Lond) 137:765–771

    Article  Google Scholar 

  • Martin RF, Piwinskii AJ (1972) Magmatism and tectonic settings. J Geophys Res 77:4966–4975

    Article  Google Scholar 

  • Morel P, Irving E (1978) Tentative paleocontinental maps for the early Phanerozoic and Proterozoic. J Geol 86:535–561

    Article  Google Scholar 

  • Murray J, Renard AF (1891) Scientific results, HMS Challenger, Deep Sea Deposits, p 391–400

    Google Scholar 

  • Notholt AJG (1979) The economic geology and development of igneous phosphate deposits in Europe and the USSR. Econ Geol 74 (2):339–350

    Article  Google Scholar 

  • Notholt AJG (1980) Igneous apatite deposits. Mode of occurrence economic development and world resources. In: Sheldon RP, Burnett WC (eds) Fertilizer mineral potential in Asia and the Pacific. Res Syst Inst, Honolulu, p 263–285

    Google Scholar 

  • O’Brien GW, Veeh HH (1980) Holocene phosphorite on the East Australia continental margin. Nature 288:690–692

    Article  Google Scholar 

  • Piper DZ, Codispoti LA (1975) Marine phosphate deposits and the nitrogen cycle. Science 188:15–18

    Article  Google Scholar 

  • Pitman WC III (1978) Relationship between eustacy and stratigraphie sequences of passive margins. Geol Soc Am Bull 89:1389–1403

    Article  Google Scholar 

  • Riggs SR (1979a) Petrology of the Tertiary phosphorite system of Florida. Econ Geol 74:195–220

    Article  Google Scholar 

  • Riggs SR (1979b) Phosphorite sedimentation in Florida - a model phosphogenic system. Econ Geol 74:285–314

    Article  Google Scholar 

  • Riggs SR (1980) Tectonic model of phosphate genesis. In: Sheldon RP, Burnett WC (eds) Fertilizer mineral potential in Asia and the Pacific. Res Syst Inst, Honolulu, p 159–190

    Google Scholar 

  • Sandvik PO, Erdosh G (1977) Geology of the Cargill phosphate deposit in northern Ontario. Can Inst Min Metal Bull 69:90–96

    Google Scholar 

  • Sassi S (1980) Contexte paléogéographique des dépots phosphates en Tunisie. Géologie comparée des gisements de phosphate et du pétrole. BRGM Mem, p 116

    Google Scholar 

  • Savin SM (1977) The history of the earth’s surface temperature during the last 100 millions years. In: Donath FA, Stehli FG, Wetherill GW (eds) Ann Rev Earth Planet Sci 5:319–355

    Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous anoxic events: Causes and consequences. Geol Minjbouw 55:179–184

    Google Scholar 

  • Scotese CR, Bambach RK, Barton C, Van der Voo R, Ziegler AM (1979) Paleozoic base maps. J Geol 87 (3):217–277

    Article  Google Scholar 

  • Sheldon RP (1964) Paleolatitudinal and palaeogeographic distribution of phosphorites. US Geol Surv, Prof Paper 501C : 106–113

    Google Scholar 

  • Sheldon RP (1980) Episodicity of phosphate deposition and deep ocean circulation - a hypothesis. Soc Econ Paleontol Mineral, Spec Pub 29:239–247

    Google Scholar 

  • Sheldon RP (1981) Ancient marine phosphorites. Ann Rev Earth Planet Sci 9:251–284

    Article  Google Scholar 

  • Sheldon RP, Burnett WC (1980) Fertilizer mineral potential in Asia and the Pacific. Res Syst Inst, Honolulu, p 481

    Google Scholar 

  • Sheldon RP, Maughan EK, Cressman ER (1967) Sedimentation of rocks of Leonard (Permian) age in Wyoming and adjacent states. In: Hale LA (ed) Anatomy of the western phosphate field. 15th Ann Field Conf, Intermount Assoc Geol, Salt Lake City, p 1–12

    Google Scholar 

  • Shergold, JH, Druce EC (1980) Upper Proterozoic and lower Palaeozoic rocks of the Georgina Basin. In: Henderson RA, Stephenson PJ (eds) The geology and geophysics of northeastern Australia. Geological Society of Australia. Queensland Division, Brisbane, p 149–175

    Google Scholar 

  • Slansky M (1980) Geologie des phosphates sedimentaires. Bur Rech Geol Min 114:92

    Google Scholar 

  • Slansky M (1980) Ancient upwelling models: Upper Cretaceous and Eocene phosphorite deposits around West Africa. In: Sheldon RP, Burnett WC (eds) Fertilizer mineral potential in Asia and the Pacific. Res Syst Inst, Honolulu, p 145–158

    Google Scholar 

  • Smith AG, Hurley AM, Briden JC (1981) Phanerozoic paleocontinental world maps. University Press, Cambridge, p 102

    Google Scholar 

  • Sorensen H (1974) The alkaline rocks. Wiley, London, p 622

    Google Scholar 

  • Southgate PN (1980) Cambrian stromatolitic phosphorites from the Georgina Basin, Australia. Nature 285:395–397

    Article  Google Scholar 

  • Strakhov NM (1960) Climate and phosphate accumulation. Geol Rudnykh Mestor-Denii, 1 (in Rus­sian)

    Google Scholar 

  • Summerhayes CP (1981) Organic facies of Middle Cretaceous black shales in deep North Atlantic. Am Assoc Petrol Geol 65 (11):2364–2380

    Google Scholar 

  • Swirydczuk K, Wilkinson BH, Smith GR (1981) Synsedimentary lacustrine phosphorites from the Pliocene Glenns Ferry Formation of southwestern Idaho. J Sed Petrol 51 (4): 1205–1214

    Google Scholar 

  • Tracey JI (1979) Quaternary episodes of insular phosphatization. In: Sheldon RP, Burnett WC (eds) Fertilizer mineral potential in Asia and the Pacific. Res Syst Inst, Honolulu, p 247–261

    Google Scholar 

  • Trueman NA (1965) The phosphate, volcanic and carbonate rocks of Christmas Island (Indian Ocean). J Geol Soc Aust 12:261–283

    Article  Google Scholar 

  • Tuttle OF, Gittins J (1966) Carbonatites. Wiley, New York, p 591

    Google Scholar 

  • Vail PR, Mitchum RM Jr, Thompson S (1977) Seismic stratigraphy and global changes of sea-level,Part 4: Global cycles of relative changes of sea-level. Am Assoc Petrol Geol Mem 26:83–97

    Google Scholar 

  • Veeh HH (1979) Uranium-series ages of insular phosphorites. In: Burnett WC, Sheldon RP (eds) Report on the marine phosphatic sediments workshop. Res Syst Inst, Honolulu, p 16–17

    Google Scholar 

  • Veeh HH, Burnett WC (1978) Uranium-series dating of insular phosphate from Ebon Atoll, Micronesia. Nature 274:460–462

    Article  Google Scholar 

  • Veeh HH, Calvert SE, Price NB (1974) Accumulation of uranium in sediments and phosphorites on the South West African Shelf. Marine Chem 2:189–202

    Article  Google Scholar 

  • Von der Borch CC (1970) Phosphatic concretions and nodules from the upper continental slope, North­ern New South Wales. J Geol Soc Australia 16:755–759

    Article  Google Scholar 

  • Warin ON (1968) Deposits of phosphate rock in Oceania. Miner Res Develop Ser, UN, New York 32:124–132

    Google Scholar 

  • Ziegler AM, Scotese CR, McKerrow WS, Johnson ME, Bambach RK (1979) Paleozoic palaeogeogra- phy. Ann Rev Earth Planet Sci 7:473–502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cook, P.J. (1984). Spatial and Temporal Controls on the Formation of Phosphate Deposits - A Review. In: Nriagu, J.O., Moore, P.B. (eds) Phosphate Minerals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61736-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61736-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-61738-6

  • Online ISBN: 978-3-642-61736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics