Skip to main content

On a Conjecture of Roth and Some Related Problems I

  • Chapter
Irregularities of Partitions

Part of the book series: Algorithms and Combinatorics 8 ((AC,volume 8))

Abstract

Let N denote the set of positive integers and put \({\text{[1,}}{\rm N}{\text{] = \{ 1,}}...{\text{,}}{\rm N}{\text{\} }}\). We use |S| to denote the cardinality of the finite set S. If S is a given set and \(\mathcal A_1,...,\mathcal A_k\) are subsets of S with

$$S={\cup}_{i=1}^k\mathcal{A}_i,\ \mathcal{A}_i\cap\mathcal{A}_i=\Theta for\ \i\neq j,$$

then \(\{\mathcal A_1,...,\mathcal A_k\}\) will be called a k-partition (or k-colouring) of S, and the subsets \(\mathcal A_1,...,\mathcal A_k\) will be referred to as classes. Let \(f:\mathcal N^t\rightarrow \mathcal N\) be a given function. If

$$n = f(a_1,...,a_t)$$

with \(a_1,..., a_t\) belonging to the same class, then this will be called a monochromatic representation of n in the form (1)

Research partially supported by Hungarian National Foundation for Scientific Research grant no. 1811

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Balog and A. Sárközy, On sums of sequences of integers, II, Acta Math. Hung. 44 (1984), 169–179.

    Article  MATH  Google Scholar 

  2. J. Baumgartner, A short proof of Hindman’s theorem, J.Comb. Th. Ser. A 17 (1974), 384–386.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Berend, Joint ergodicity and mixing, J. Analyse Math. 45 (1985), 255–284.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Erdős, Some unsolved problems, MTA MKI Közl. 6 (1961), 221–254.

    Google Scholar 

  5. P. Erdős and Sárközy, On differences and sums of integers, I, J. Number Theory 10 (1978), 430–450.

    Article  MathSciNet  Google Scholar 

  6. P. Erdős and A. Sárközy, On monochromatic products, to appear.

    Google Scholar 

  7. H. Fürstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    Article  MathSciNet  Google Scholar 

  8. H. Fürstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61–85.

    Article  MathSciNet  Google Scholar 

  9. R.K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981.

    Google Scholar 

  10. D. Hilbert, Über die Irreduzibilität ganzer rationaler Functionen mit ganzzahligen Koefficienten, J. Reine Angew. Math. 110 (1892), 104–129.

    Article  Google Scholar 

  11. N. Hindman, Finite sums from sequences within cells of a partition of N, J. Comb. Th. Ser. A 17 (1974), I–II.

    MathSciNet  Google Scholar 

  12. J.C. Lagarias, A.M. Odlyzko and J.B. Shearer, On the Density of Sequences of Integers the Sum of No Two of which is a Square, I, Arithmetic Progressions, J. Comb. Th. Ser. A 33 (1982), 167–185.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.C. Lagarias, A.M. Odlyzko and J.B. Shearer, On the Density of Sequences of Integers the Sum of No Two of which is a Square, II, General Sequences, J. Comb. Th. Ser. A 34 (1983), 123–139.

    Article  MathSciNet  Google Scholar 

  14. C. Pomerance, A. Sárközy and C.L. Stewart, On divisors of sums of integers, II, Pacific J. Math., to appear.

    Google Scholar 

  15. I.Z. Ruzsa, oral communication.

    Google Scholar 

  16. I.Z. Ruzsa, Probabilistic constructions in additive number theory, Soc. Math. France Astérique 147–148 (1987), 173–182.

    MathSciNet  Google Scholar 

  17. A. Sárközy, On difference sets of sequences of integers, I, Acta Math. Hung. 31 (1978), 125–149.

    Article  MATH  Google Scholar 

  18. A. Sárközy, On difference sets of sequences of integers, III, Acta Math. Hung. 31 (1978), 355–386.

    Article  MATH  Google Scholar 

  19. A. Sárközy and C.L. Stewart, On divisors of sums of integers, II, Math. Annalen.

    Google Scholar 

  20. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithm. 27 (1975), 199–245.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erdős, P., Sárközy, A., Sós, V.T. (1989). On a Conjecture of Roth and Some Related Problems I. In: Halász, G., Sós, V.T. (eds) Irregularities of Partitions. Algorithms and Combinatorics 8, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61324-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61324-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50582-2

  • Online ISBN: 978-3-642-61324-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics