Skip to main content

Bacterial Biomass

  • Chapter
Methods in Soil Biology
  • 1190 Accesses

Abstract

Among soil microorganisms, bacteria are particularly suitable for quantification by counting. It should be considered, however, that bacteria are never uniformly distributed in the soil and that their spatial arrangement varies even in neighbouring microsites. Furthermore, the bacterial biomass may fluctuate drastically within short periods. Counting of soil bacteria can be achieved by direct microscopy as well as by cultural methods. The most widespread cultural method, the plate count technique, is based on the development of colonies from individual propagules. Microscopic bacteria counts of soil samples are often up to 1000 times greater than viable counts obtained by cultural techniques. The reasons for the greater values obtained by microscopy are the inclusion of dead cells and organisms which fail to grow in conventional culture media under the conditions of incubation provided. Groups of bacteria generally not included in viable counts are e.g. nitrogen-fixing bacteria, nitrifiers, cellulolytic organisms and anaerobic bacteria, as they depend on selective media and/or special growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arredondo R, Jerez C (1989) Specific dot-immunobinding assay for the detection and enumeration of Thiobacillus ferroxidans. Appl Environ Microbiol 31:524– 528

    Google Scholar 

  • Bohlool BB, Schmidt EL (1980) The immunofluorescence approach in microbial ecology. In:Alexander M (ed) Advances in microbial ecology 4. Academic Press, London, pp 203–241

    Google Scholar 

  • Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Galfre G, Milstein C (1981) Preparation of monoclonal antibodies:strategies and procedures. Meth Knzymol 73:3–46

    Article  CAS  Google Scholar 

  • Levanony II, Bashan Y (1990) Avidin-biotin complex incorporation into enzyme linked immunosorbent assay (ABELISA) for improving the detection of Azospirillum brasi1ensecd. Curr Microbiol 20:91–94

    Article  CAS  Google Scholar 

  • Ogan M (1991) Studies on the ecology of aquatic bacteria of the lower Niger delta:populations of viable cells and physiological groups. Arch Hydrobiol 124:235–252

    Google Scholar 

  • Page AL, Miller RII, Keenev DR (eds) (1982) Methods of soil analysis, part 2. Am Soc Argon, Madison, Wisconsin

    Google Scholar 

  • Schloter M, Bode W, Hartmann A, Beese F (1992) Sensitive chemoluminescence based quantification of bacteria in soil extracts with monoclonal antibodies. Soil Biol Biochem 24:399–403

    Article  Google Scholar 

  • Schloter M, Borlinghaus R, Bode W, Hartmann A (1993) Direct identification and localization of Azospirillumin the rhizosphere of wheat using fluorescence- labeled monoclonal antibodies and confocal scanning microscopy. J Microsc 171:173–177

    Article  Google Scholar 

  • Schloter M, Moens S, Groes G, Reidel G, Esquenet M, De Mot R, Hartmann A, Michiels K (1994) Characterization of cell surface components of Azospirillum brasilenseSp7 as antigenic determinants for strain-specific monoclonal antibodies. Microbiology 140:823–828

    Article  CAS  Google Scholar 

  • Trolldenier G (1973) The use of fluorescence microscopy for counting soil microorganisms. Bull Ecol Res Committee, Stockholm, 17:53–59

    Google Scholar 

  • Clarholm M, Rosswall T (1979) Biomass and turnover of bacteria in a forest soil and a peat. Soil Biol Biochem 12:49–57

    Article  Google Scholar 

  • Lehner A, Nowak W, Seibold L (1958) Eine Weiterentwicklung des Boden- Fluorochromierungs verfahrens mit Acridinorange zur Kombinationsmethode. Landw Forsch 11:121–127

    Google Scholar 

  • Schmidt EL, Paul EA (1982) Microscopic methods for soil microorganisms. In:Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Agron, Madison Wisconsin, pp 803–814

    Google Scholar 

  • Strugger S (1949) Fluoreszenzmikroskopie und Mikrobiologie. Schaper-Verlag, Hannover

    Google Scholar 

  • Trolldenier G (1965) Fluorescenzmikroskopische Untersuchung der Rhizosphäre. Landw Forsch 19, Sonderheft:110–115

    Google Scholar 

  • Trolldenier G (1972) Fluoreszenzmikroskopische Zählung von Bodenbakterien. I. Historischer Überblick und Beschreibung eines Verfahrens zur Zahlung von Bodenbakterien in Trockenpraparaten nach Farbung mit Acridinorange. Zentralbl Bakt II, 127:25–40

    Google Scholar 

  • Trolldenier G (1973) The use of fluorescence microscopy for counting soil microorganisms. Bull Ecol Res Committee, Stockholm, 17:53–59

    Google Scholar 

  • Trolldenier G, Schäfer P (1972) Fluoreszenzmikroskopische Zählung von Bodenbakterien. II. Historischer Überblick und Bechreibung eines Verfahren zur Zählung von Bodenbakterien in Trockenpräparaten nach Färbung mit Acridinorange. Zentralbl Bakt II, 127:41–50

    Google Scholar 

  • Hirsch CF, Christensen DL, (1983) Novel method on selective isolation of actionomytes. Applied Environ Microbiol 46:925–929

    Google Scholar 

  • Trolldenier G (1966) Über die Einung Erde enthaltender Nährsubstrate zur Zählung und Isolierung von Bodenmikroorganismen auf Membrabfiltern. Zentralbl BaktII, 20:496–508

    Google Scholar 

  • Trolldenier G (1967) Isolierung und Zählung von Bodenactinomyceten auf Erdplatten mit Membranfiltren. Pant Soil 27:285–288

    Article  Google Scholar 

  • Trolldenier G (1971) Einfluß der Kalium- und Stickstoffernaährung von Weinzen auf die Bakterirnbesiedlung der Rhizophäre. Landw Forsch 26/II, Sonderheft:37–46

    Google Scholar 

  • Wollum II AG (1982) Cultural methods for soil microorganism. In:Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Argon, Madison, Wisconsin, pp 781–802

    Google Scholar 

  • Alexander M (1982) Most probable number method for microbial populations. In:Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Argon, Madison, Wisconsin, pp 815–820

    Google Scholar 

  • Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Benckiser G, Syring K-M (1992) Denitrifikation in Agrarstandorten. BioEngineering 8:46–52

    CAS  Google Scholar 

  • Rheinbaben von W (1990) Nitrogen losses from agricultural soils through devitrification — a critical evaluation. Z Pflanzenernaehr Bodenkd 153:157–166

    Article  Google Scholar 

  • Tiedje JM (1982) Denitrification. In:Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Agron, Madison, Wisconsin, pp 1011–1026

    Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen — inorganic forms. In:Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Agron, Madison, Wisconsin, pp 645–698

    Google Scholar 

  • Molina JAE, Rovira AD (1964) The influence of plant roots on autotrophic nitrifying bacteria. Can J Microbiol 10:249–257

    Article  Google Scholar 

  • Schmidt EL (1982) Nitrification in soils. In:Stevenson FJ (ed) Nitrogen in agricultural soils. Am Soc Agron, Madison, Wisconsin, pp 253–288

    Google Scholar 

  • Schmidt EL, Belser LW (1982) Nitrifying bacteria. In:Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Agron, Madison, Wisconsin, pp 1027–1042

    Google Scholar 

  • Brown ME, Burlingham SK, Jackson RM (1962) Studies on Azotobacterspecies in soil. I. Comparison of media and techniques for counting Azotobacterin soil. Plant Soil 17:309–319

    Article  Google Scholar 

  • Döbereiner J, Day JM (1974) Associative symbioses on tropical grasses:characterization of microorganisms and dinitrogen-fixing sites. In:Newman WE, Nyman CJ (eds) Proceedings 1st international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Knowles R (1982) Free-living dinitrogen-fixing bacteria. In:Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Agron, Madison, Wisconsin, pp 1071–1092 Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14

    Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from the soil. Can J Microbiol 27:8–14

    Article  CAS  Google Scholar 

  • Trolldenier G (1977) Influence of some environmental factors on nitrogen fixation in the rhizosphere of rice. Plant Soil 47:203–217

    Article  CAS  Google Scholar 

  • Watanabe I, Barraquio WL, De Guzman MR, Cabrera DA (1979) Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen- fixing bacteria associated with wetland rice. Appl Environ Microbiol 37:813– 819

    CAS  Google Scholar 

  • Galfre G, Milstein C (1981) Preparation of monoclonal antibodies:Strategies and procedures. Meth Enzymol 73:3–46

    Article  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies:a laboratory manual. Cold Spring Harbor Labratory, Cold Spring Harbor, New York

    Google Scholar 

  • Levanony H, Bashan Y (1990) Avidin-biotin complex incorporation into enzyme linked immunosorbent assay (ABELISA) for improving the detection of Azospirillum brasilense cd. Curr Microbiol 20:91–94

    Article  CAS  Google Scholar 

  • Schloter M, Bode W, Hartmann A, Beese F (1992) Sensitive chemoluminescence based quantification of bacteria in soil extracts with monoclonal antibodies. Soil Biol Biochem 24:399–403

    Article  Google Scholar 

  • Schloter M, Assmus B, Hartmann A (1995) The use of immunological methods to detect and identify bacteria in the environment. Biotec Adv 13:75–90

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trolldenier, G., Schholter, M., Bode, W., Hartmann, A. (1996). Bacterial Biomass. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds) Methods in Soil Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60966-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60966-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64633-1

  • Online ISBN: 978-3-642-60966-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics