Skip to main content

Innervation of Muscle and Neuromuscular Transmission

  • Chapter
Comprehensive Human Physiology

Abstract

In contrast to the spontaneous activity displayed by smooth and heart muscle cells, striated muscle fibers of the skeletal muscle are directly controlled by central neuronal activity. Motor nerves contact muscle fibers at large chemical synapses called neuromuscular junctions or motor end plates (Fig. 15.1). The motor end plate where the nerve is connected to skeletal muscle represents the prototype of a chemical synapse in mammals. Here, each fiber of a skeletal muscle is connected to one particular motor neuron localized in the ventral horn of the spinal cord, while any given motor neuron innervates several muscle fibers. The motor neuron, together with all the muscle fibers with which it forms these synapses, is called a motor unit (see also Chaps. 45, 46, 49). The excitatory event of a motor neuron is transmitted along myelinized axons to the presynapses, where release of the synaptic transmitter acetylcoline (ACh) is induced. By opening ACh receptor channels, this release elicits a postsynaptic depolarization, which causes an action potential by opening sodium channels which depolarize the whole membrane area of the skeletal muscle fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almers W, Tse FW (1990) Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis. Neuron 4:813–818

    Article  PubMed  CAS  Google Scholar 

  2. del Castillo J, Katz B (1954) Quantal components of the endplate potential. J Physiol 124:560–573

    Google Scholar 

  3. Katz B (1966) Nerve, muscle and synapse. McGraw Hill, New York

    Google Scholar 

  4. Boyd IA, Martin AR (1956) The end-plate potential in mammalian muscle. J Physiol 132:74–91

    PubMed  CAS  Google Scholar 

  5. Miyamoto MD (1975) Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions. J Physiol 250:121–142

    PubMed  CAS  Google Scholar 

  6. Steinbach JH, Stevens CF (1976) Neuromuscular transmission. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelbery New York, pp 33–92

    Chapter  Google Scholar 

  7. Heuser JE, Reese TS (1981) Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol 88:564–580

    Article  PubMed  CAS  Google Scholar 

  8. Smith SJ, Augustine GJ (1988) Calcium ions, active zones and synaptic transmitter release. Trends Neurosci 11: 458–464

    Article  PubMed  CAS  Google Scholar 

  9. Hochner B, Parnas H, Parnas I (1989) Membrane depolarization evokes neurotransmitter release in the absence of calcium entry. Nature 342:433–435

    Article  PubMed  CAS  Google Scholar 

  10. O’Connor V, Augustine GJ, Betz H (1994) Synaptic vesicle exocytosis molecules and models. Cell 76:785–787

    Article  PubMed  Google Scholar 

  11. Hall ZW, Sanes JR (1993) Synaptic structure and development: the neuromuscular junction. Cell 72:99–121

    Article  PubMed  Google Scholar 

  12. Connor EA, Smith MA (1994) Retrograde signaling in the formation and maintenance of the neuromuscular junction. J Neurobiol 25:722–739

    Article  PubMed  CAS  Google Scholar 

  13. Lorkovic H, Tomanek RJ (1977) Potassium and chloride conductances in normal and denervated rat muscles. Am J Physiol 232:cl09-c114

    Google Scholar 

  14. Weiss RE, Horn R (1986) Functional differences between two classes of sodium channels in developing rat skeletal muscle. Science 233:361–364

    Article  PubMed  CAS  Google Scholar 

  15. Numa S (1989) A molecular view of neurotransmitter receptors and ionic channels. Harvey Lect 83:121–165

    Google Scholar 

  16. Schuetze SM, Role LW (1987) Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci 10: 403–457

    Article  PubMed  CAS  Google Scholar 

  17. Wallace BG (1990) Inhibition of agrin-induced acetylcholine-receptor aggregation by heparin, heparan sulfate and other polyanions. J Neurosci 10:3576–3582

    PubMed  CAS  Google Scholar 

  18. Huganir RL, Greengard P (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5:555–567

    Article  PubMed  CAS  Google Scholar 

  19. Sakmann B (1992) Elementare lonenströme und synaptische Übertragung (Nobel-Vortrag). Angew Chemie 104:844–856

    Article  CAS  Google Scholar 

  20. Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1457

    Article  PubMed  CAS  Google Scholar 

  21. Unwin PNT (1993) Neurotransmitter action: regulation of ligand-gated channels. Cell 72:31–41

    Article  PubMed  Google Scholar 

  22. Unwin PNT (1993) Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol 229:1101–1124

    Article  PubMed  CAS  Google Scholar 

  23. Karlin A (1991) Exploration of the nicotinic acetylcholine receptor. Harvey Lect 85:71–107

    CAS  Google Scholar 

  24. Neher E, Sakmann B (1976) Noise analysis of drug induced voltage-clamp currents in denervated frog muscle fibers. J Physiol (Lond) 258:377–410

    Google Scholar 

  25. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260:799–801

    Article  PubMed  CAS  Google Scholar 

  26. Oswald R, Changeux JP (1982) Crosslinking of α-bungarotoxin to the acetylcholine receptor from Torpedo marmorata by ultraviolet light irradiation. FEBS Lett 139: 225–229

    Article  PubMed  CAS  Google Scholar 

  27. Devillers-Thiéry A, Giraudat J, Bentaboulet M, Changeux JP (1983) Complete mRNA coding sequence of the acetylcholine binding α-subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc Natl Acad Sci USA 80:2067–2071

    Article  PubMed  Google Scholar 

  28. Imoto K, Methfessel C, Sakmann B, Mishina M, Mori Y, Konno T, Fukuda K, Kurasaki M, Bujo H, Fujita Y, und Numa S (1986) Location of a d-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324:670–674

    Article  PubMed  CAS  Google Scholar 

  29. Villarroel A, Sakmann B (1992) Threonine in the selectivity filter of the acetylcholine receptor channel. Biophys J 62: 196–208

    Article  PubMed  CAS  Google Scholar 

  30. Colquhoun D, Sakmann B (1985) Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol (Lond) 369:501–557

    CAS  Google Scholar 

  31. Franke C, Koltgen D, Hatt H, Dudel J (1992) Activation and desensitization of embryonic-like receptor channels in mouse muscle by acetylcholine concentration steps. J Physiol (Lond) 451:145–158

    CAS  Google Scholar 

  32. Bufler J, Franke C, Witzemann V, Ruppersberg JP, Herlitze S, Dudel J (1993) Desensitization of embryonic nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neurosci Lett 152:77–80

    Article  PubMed  CAS  Google Scholar 

  33. Huganir RL, Greengard P (1987) Regulation of receptor function by protein phosphorylation. TIPS 8:472–477

    CAS  Google Scholar 

  34. Smith MM, Merlie JP, Lawrence JC Jr (1989) Ca2+-dependent and cAMP-dependent control of nicotinic acetylcholine receptor phosphorylation in muscle cells. J Biol Chem 264:12813–12819

    PubMed  CAS  Google Scholar 

  35. Hoffman PW, Ravindran A, Huganir RL (1994) Role of phosphorylation in desensitization of acetylcholine receptors expressed in Xenopus oocytes. J Neurosci 14:4185–4195

    PubMed  CAS  Google Scholar 

  36. Siara J, Ruppersberg JP, Rudel R (1990) Human nicotinic acetylcholine receptor: the influence of second messengers on activation and desensitization. Pflügers Arch 415:701–706

    Article  PubMed  CAS  Google Scholar 

  37. Arakawa M, Mizoguchi A, Masutani M, Kawakita N, Ide C (1993) Ultrastructural localization of protein kinase C beta-subspecies in the axon terminal of rat neuromuscular junction. Neurosci Res 16:125–130

    Article  PubMed  CAS  Google Scholar 

  38. Van der Kloot W (1991) Down-regulation of quantal size at frog neuromuscular junctions: possible roles for elevated intracellular calcium and for protein kinase C. J Neurobiol 22:204–214

    Article  PubMed  Google Scholar 

  39. Oosterhuis HJ, Kuks JB (1992) Myasthenia gravis and myasthenic syndromes. Curr Opin Neurol Neurosurg 5: 638–644

    PubMed  CAS  Google Scholar 

  40. Protti MP, Manfredi AA, Horton RM, Bellone M, Conti TB (1993) Myasthenia gravis: recognition of a human autoantigen at the molecular level. Immunol Today 14:363–368

    Article  PubMed  CAS  Google Scholar 

  41. Marx A, Osborn M, Tzartos S, Geuder KI, Schalke B, Nix W, Kirchner T, Muller HH (1992) A striational muscle antigen and myasthenia gravis-associated thymomas share an acetyl-choline-receptor epitope. Dev Immunol 2:77–84

    Article  PubMed  CAS  Google Scholar 

  42. Leys K, Lang B, Johnston I, Newsom DJ (1991) Calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. Ann Neurol 29:307–314

    Article  PubMed  CAS  Google Scholar 

  43. Kim YI, Blandino JK, O’Shaughnessy TJ (1993) Inhibitory action of Lambert-Eaton syndrome IgG on calcium currents in a thyroid C-cell line. Ann NY Acad Sci 681:398–401

    Article  PubMed  CAS  Google Scholar 

  44. Leveque C, Hoshino T, David P, Shoji KY, Leys K, Omori A, Lang B, el FO, Sato K, Martin MN et al. (1992) The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenis syndrome antigen. Proc Natl Acad Sci USA 89:3625–3629

    Article  PubMed  CAS  Google Scholar 

  45. Rosenfeld MR, Wong E, Dalmau J, Manley G, Egan D, Posner JB, Sher E, Furneaux HM (1993) Sera from patients with Lambert-Eaton myasthenic syndrome recognize the beta-subunit of Ca2+ channel complexes. Ann NY Acad Sci 681:408–411

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruppersberg, J.P., Herlitze, S. (1996). Innervation of Muscle and Neuromuscular Transmission. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics