Skip to main content

Uncalibrated Motion of Points and Lines

  • Chapter
A Few Steps Towards 3D Active Vision

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 33))

  • 159 Accesses

Abstract

As required in any active vision system, we address the problem of computing structure and motion, given a set of points and/or line correspondences, in a monocular image sequence, when the camera is not calibrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 6

  1. H.C. Longuet-Higgins. A Computer Algorithm for Reconstructing a Scene from Two Projections. Nature, 293:133–135, 1981.

    Article  Google Scholar 

  2. Y. Liu and T.S. Huang. Estimation of Rigid Body Motion Using Straight Line Correspondences. Computer Vision, Graphics and Image Processing, pp. 35–57, 1988.

    Google Scholar 

  3. A. Mitiche, S. Seida, and J.K. Aggarwal. Interpretation of Structure and Motion Using Straight Line Correspondences. In: Proc. of the 8th ICPR, pp. 1110–1112, Paris, France, October 1986. IEEE Computer Society Press, Alamitos, CA.

    Google Scholar 

  4. O.D. Faugeras, F. Lustman, and G. Toscani. Motion and Structure from Point and Line Matches. In: Proc. of the 1st International Conference on Computer Vision, London, pp. 25–34, June 1987.

    Google Scholar 

  5. O.D. Faugeras, Q.T. Luong, and S. Maybank. Camera Self-Calibration: Theory and Experiment. In: 2nd European Conference on Computer Vision, Genoa, 1992.

    Google Scholar 

  6. H.P. Trivedi. Semi-analytic Method for Estimating Stereo Camera Geometry from Matched Points. Image and Vision Computing, 9, 1991.

    Google Scholar 

  7. N.A. Thacker. On-line Calibration of a 4-dof Robot Head for Stereo Vision. In: British Machine Vision Association Meeting on Active Vision, London, 1992

    Google Scholar 

  8. T. Viéville. Autocalibration of Visual Sensor Parameters on a Robotic Head. Image and Vision Computing, 12, 1994.

    Google Scholar 

  9. R.I. Hartley and R. Gupta. Computing Matched-Epipolar Projections. In: Proc. of the CVPR J93 Conference, pp. 549–555, 1993.

    Google Scholar 

  10. R.I. Hartley. Camera Calibration Using Line Correspondences. In: Proc. DARPA Image Understanding Workshop, pp. 361–366, March 1993.

    Google Scholar 

  11. R. Deriche and O.D. Faugeras. Tracking Line Segments. In: Proc. of the 1st European Conference on Computer Vision, Antibes, pp. 259–269. Springer- Verlag, Berlin, 1990.

    Google Scholar 

  12. M.J. Stephens, R.J. Blisset, D. Charnley, E.P. Sparks, and J.M. Pike. Outdoor Vehicle Navigation Using Passive 3D Vision. In: Computer Vision and Pattern Recognition, pp. 556–562. IEEE Computer Society Press, 1989.

    Google Scholar 

  13. J.L. Crowley, P. Bobet, and C. Schmid. Autocalibration by Direct Observations of Objects. Image and Vision Computing, 11, 1993.

    Google Scholar 

  14. J.M. Lavest, G. Rives, and M. Dhome. 3D Reconstruction by Zooming. In: Intelligent Autonomous System, Pittsburg, 1993.

    Google Scholar 

  15. R.Y. Tsai. Synopsis of Recent Progress on Camera Calibration for 3D Machine Vision. Robotics Review, 1:147–159, 1989.

    Google Scholar 

  16. O.D. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Boston, 1993.

    Google Scholar 

  17. S. Maybank and O.D. Faugeras. A Theory of Self-Calibration of a Moving Camera. The International J. of Computer Vision, 8, 1992.

    Google Scholar 

  18. R. Enciso, T. Viéville, and O. Faugeras. Approximation du Changement de Focale et de Mise au Point par une Transformation Affine a Trois Parametres. Technical Report 2071, INRIA, 1993.

    Google Scholar 

  19. R. Willson. Modeling and Calibration of Automated Zoom Lenses. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, 1994.

    Google Scholar 

  20. R.G. Willson and S.A. Shafer. What is the Center of the Image? In: IEEE Proc. CVPR ’93, New York, June, pp. 670–671, 1993.

    Google Scholar 

  21. T. Viéville, P.E.D.S. Facao, and E. Clergue. Building a Depth and Kinematic 3D-Map from Visual and Inertial Sensors Using the Vertical Cue. In: 4th International. Conference on Computer Vision, Berlin, ed. by H.H. Nagel. IEEE Computer Society Press, Los Alamitos, CA, 1993.

    Google Scholar 

  22. T. Viéville, C. Zeller, and L. Robert. Using Collineations to Compute Motion and Structure in an Uncalibrated Image Sequence. International J. of Computer Vision, 1995. To appear.

    Google Scholar 

  23. T.S. Huang and A. Netravali. Linear and Polynomial Methods in Motion Estimation. In: Signal Processing, Part I: Signal Processing Theory, ed. by L. Auslander, T. Kailath, and S. Mitter. Springer-Verlag, 1990.

    Google Scholar 

  24. J.L.S. Mundy and A. Zisserman. Geometric Invariance in Computer Vision. MIT Press, Boston, 1992.

    Google Scholar 

  25. T. Luong. Matrice Fondamentale et Calibration Visuelle sur l’Environnement. PhD thesis, Universite de Paris-Sud, Orsay, 1992.

    Google Scholar 

  26. Q.-T. Luong and T. Viéville. Canonic Representations for the Geometries of Multiple Projective Views. In: 3rd European Conference on Computer Vision, Stockholm, 1994.

    Google Scholar 

  27. O.D. Faugeras. What Can Be Seen in Three Dimensions with an Uncalibrated Stereo Rig? In: 2nd European Conference on Computer Vision, Genoa, 1992.

    Google Scholar 

  28. L Quan. Invariants of 6 Points form 3 Uncalibrated Images. In: 3rd European Conference on Computer Vision, Stockholm, 1994.

    Google Scholar 

  29. N. Navab, O.D. Faugeras, and T. Viéville. The Critical Sets of Lines for Camera Displacement Estimation:A Mixed Euclidean-Projective and Constructive Approach. In: Proc. of the 4th International Conference on Computer Vision, Berlin, Germany, May 1993, pp. 713–723, IEEE.

    Google Scholar 

  30. T. Viéville and O.D. Faugeras. Feed Forward Recovery of Motion and Structure from a Sequence of 2D-Lines Matches. In: 3rd International Conference on Computer Vision, Osaka, ed. by S. Tsuji, A. Kak, and J.-O. Eklundh, pp. 517–522. IEEE Computer Society Press, Los Alamitos, CA, 1990.

    Google Scholar 

  31. L. Robert. Perception Stereoscopique de Courbes et de Surfaces Tridimensionnelles, Application a la Robotique Mobile. PhD thesis, Ecole Poly technique, Palaiseau. France, 1992.

    Google Scholar 

  32. L. Robert and O.D. Faugeras. Relative 3D Positioning and 3D Convex Hull Computation from a Weakly Calibrated Stereo Pair. In: 4th International. Conference on Computer Vision, Berlin, ed. by H.H. Nagel. IEEE Computer Society Press, Los Alamitos, CA, 1993.

    Google Scholar 

  33. Q.T. Luong, R. Deriche, O.D. Faugeras, and T. Papadopoulo. On Determining the Fundamental Matrix: Analysis of Different Methods and Experimental Results. Technical Report RR-1894, INRIA, Sophia, France, 1993.

    Google Scholar 

  34. J. Heel. Temporally Integrated Surface Reconstruction. In: Proc. of the 3rd International Conference on Computer Vision, Osaka, 1990.

    Google Scholar 

  35. T. Viéville, P.E.D.S. Facao, and E. Clergue. Computation of Ego-Motion Using the Vertical Cue. Machine Vision and Applications, 1994. To appear.

    Google Scholar 

  36. P.E. Gill and W. Murray. Algorithms for the Solution of Non-linear Least Squares Problem. SIAM J. on Numerical Analysis, 15:977–992, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Deriche and G. Giraudon. Accurate Corner Detection: An Analytical Study. In: Proc. of the 3rd International Conference on Computer Vision, Osaka, pp. 66–71, 1990.

    Google Scholar 

  38. A. Guiducci. Corner Characterization by Differential Geometry Techniques. Pattern Recognition Letters, 8:311–318, 1988.

    Article  MATH  Google Scholar 

  39. P.A. Ruymgaart and T.T. Soong. Mathematics of Kalman-Bucy filtering. Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  40. L.N. Kanal and J.F. Lemmer. Uncertainty in Artificial Intelligence. North Holland Press, Amsterdam, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Viéville, T. (1997). Uncalibrated Motion of Points and Lines. In: A Few Steps Towards 3D Active Vision. Springer Series in Information Sciences, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60842-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60842-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64580-8

  • Online ISBN: 978-3-642-60842-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics