Skip to main content

Auto-Calibration of a Robotic Head

  • Chapter
A Few Steps Towards 3D Active Vision

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 33))

  • 160 Accesses

Abstract

Visual sensor calibration represents the problem of determining the parameters of the transformation between the 3D information of the imaged object in space and the 2D observed image. Such a relationship is mandatory for 3D vision. More precisely, we have to know the location (translation) and attitude (rotation) of the visual sensor with respect to the rest of the robotic system (extrinsic parameters), and the different parameters of the lens, such as focal length, magnitude factors, optical center retinal location (intrinsic parameters).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

Chapter 3

  1. T. Viéville. Real Time Gaze Control: Architecture for Sensing Behaviours. In: The 1991 Stockholm Workshop on Computational Vision, Rosenon, Sweden, ed. by J.-O. Eklundh. Royal Institute of Technology, Stockholm, Sweden, 1991.

    Google Scholar 

  2. J.-O. Ekhlund, K. Pahlavan, and T. Uhlin. Presentation of the kth Robotic Head. In: 5th Scandinavian Workshop on Computational Vision, Rosenon, Sweden, 1991.

    Google Scholar 

  3. G. Toscani and O.D. Faugeras. Camera Calibration for 3D Computer Vi¬sion. In: Proc. of the International Workshop on Machine Intelligence, Tokyo, February 1987.

    Google Scholar 

  4. R.Y. Tsai. An Efficient and Accurate Calibration Technique for 3D Machine Vision. In: IEEE Proc. CVPR ’86, Miami Beach, FL, June, pp. 364–374, 1986.

    Google Scholar 

  5. D.C. Brown. Close-Range Camera Calibration. Photogrammetric Engineering, 37, 1971.

    Google Scholar 

  6. R.Y. Tsai. Synopsis of Recent Progress on Camera Calibration for 3D Machine Vision. Robotics Review, 1:147–159, 1989.

    Google Scholar 

  7. O.D. Faugeras, Q.T. Luong, and S. Maybank. Camera Self-Calibration: Theory and Experiment. In: 2nd, European Conference on Computer Vision, Genoa, 1992.

    Google Scholar 

  8. S. Maybank and O.D. Faugeras. A Theory of Self-Calibration of a Moving Camera. The International J. of Computer Vision, 8, 1992.

    Google Scholar 

  9. H.P. Trivedi. Semi-analytic Method for Estimating Stereo Camera Geometry from Matched Points. Image and Vision Computing, 9, 1991.

    Google Scholar 

  10. N.A. Thacker. On-line Calibration of a 4-dof Robot Head for Stereo Vision. In: British Machine Vision Association Meeting on Active Vision, London, 1992.

    Google Scholar 

  11. G. Toscani, R. Vaillant, R. Deriche, and O.D. Faugeras. Stereovision Camera Calibration Using the Environment. In: Proc. of the 6th Scandinavian Conference on Image Analysis, June 1989.

    Google Scholar 

  12. E. Francois and P. Bouthemy. Multiframe-Based Identification of Mobile Components of a Scene with a Moving Camera. In: Conference on Computer Vision and Pattern Recognition, Hawai, pp. 166–172. IEEE Computer Society Press, Alamitos, CA, 1991.

    Google Scholar 

  13. A. Rognone, M. Campani, and A. Verri. Identifying Multiple Motions from Optical Flow. In: 2nd European Conference on Computer Vision, pp. 258–268. Springer-Verlag, 1992.

    Google Scholar 

  14. B. Giai-Checa, P. Bouthemy, and T. Viéville. Detection of Moving Objects. Technical Report RR-1906, INRIA, Sophia, France, 1993.

    Google Scholar 

  15. N. Navab and Z. Zhang. From Multiple Objects Motion Analysis to Behavior- Based Object Recognition. In: Proc. ECAI 92pp. 790–794, Vienna, Austria, August 1992.

    Google Scholar 

  16. T. Vieville. Estimation of 3D-Motion and Structure from Tracking 2D-Lines in a Sequence of Images. In: Proc. of the 1st European Conference on Computer Vision, Antibes, pp. 281–292. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  17. R. Deriche and O.D. Faugeras. Tracking Line Segments. In: Proc. of the 1st European Conference on Computer Vision, Antibes, pp. 259–269. Springer- Verlag, Berlin, 1990.

    Google Scholar 

  18. M.J. Stephens, R.J. Blisset, D. Charnley, E.P. Sparks, and J.M. Pike. Outdoor Vehicle Navigation Using Passive 3D Vision. In: Computer Vision and Pattern Recognition, pp. 556–562. IEEE Computer Society Press, 1989.

    Google Scholar 

  19. T. Luong. Matrice Fondamentale et Calibration Visuelle sur l’Environnement. PhD thesis, Universite de Paris-Sud, Orsay, 1992.

    Google Scholar 

  20. J.M. Lavest, G. Rives, and M. Dhome. 3D Reconstruction by Zooming. In: Intelligent Autonomous System, Pittsburg, 1993.

    Google Scholar 

  21. O.D. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Boston, 1993.

    Google Scholar 

  22. T. Viéville. Autocalibration of Visual Sensor Parameters on a Robotic Head. Image and Vision Computing, 12, 1994.

    Google Scholar 

  23. R. Lenz. Group Theoretical Methods in Image Processing. Lecture Notes in Computer Science 413, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  24. N. Ayache. Artificial Vision for Mobile Robots. MIT Press, Cambridge, MA, 1989.

    Google Scholar 

  25. P.E. Gill and W. Murray. Algorithms for the Solution of Non-linear Least Squares Problem. SIAM J. on Numerical Analysis, 15:977–992, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Viéville and P. Sander. Using Pseudo Kalman-Filters in the Presence of Constraints. Technical Report RR-1669, INRIA, Sophia, France, 1992.

    Google Scholar 

  27. H.P. Trivedi. Estimation of Stereo and Motion Parameters Using a Variational Principle. Image and Vision Computing, 5, May 1987.

    Google Scholar 

  28. J.L. Crowley, P. Bobet, and C. Schmid. Autocalibration by Direct Observations of Objects. Image and Vision Computing, 11, 1993.

    Google Scholar 

  29. H.C. Longuet-Higgins. A Computer Algorithm for Reconstructing a Scene from Two Projections. Nature, 293:133–135, 1981.

    Article  Google Scholar 

  30. S.J. Maybank. Properties of Essential Matrices. International J. of Imaging Systems and Technology, 2, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Viéville, T. (1997). Auto-Calibration of a Robotic Head. In: A Few Steps Towards 3D Active Vision. Springer Series in Information Sciences, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60842-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60842-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64580-8

  • Online ISBN: 978-3-642-60842-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics