Skip to main content

Radiometric Estimates of Nitrogen Status of Leaves and Canopies

  • Chapter
Diagnosis of the Nitrogen Status in Crops

Abstract

Estimation of the nitrogen status of plants provides key information for optimum management of fertilizer applications to crops as reviewed in Chapters 9 and 11 (this Vol.). Most of the techniques currently used are based on plant sampling, generally using the biochemical composition of plant tissues and mainly nitrogen concentration. These techniques are generally tedious, time-consuming, destructive, and thus cannot not be repeated many times for a more representative evaluation of the canopy nitrogen status in a field or amongst fields of a given area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Badhwar GD (1984) Automatic corn-soybean classification using Landsat MSS data. II Early season crop proportion estimation.Remote Sens Environ 14:31,37

    Article  Google Scholar 

  • Baret F (1994) Use of reflectance spectral variation to retrieve canopy biophysical characteristics. In: Danson FMPlummer SE (eds) Advances in environmental remote sensing. John Wiley, Chichester, pp 33–51

    Google Scholar 

  • Baret F, Andrieu B (1994) Interêt du moyen infrarouge pour caracteriser la végétation. Bull Soc Fr Photogramm Teledetect 136(4)8–22

    Google Scholar 

  • Baret F, Fourty T (1996) Spectral estimates of leaf water content and specific weight. Remote Sens Environ (Submitted)

    Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2-3):161–173

    Article  Google Scholar 

  • Baret F, Champion I, Guyot G, Podaire A (1987) Monitoring wheat canopies with high spectral resolution radiometer. Remote Sens Environ 22(3)367–378

    Article  Google Scholar 

  • Baret F, Andrieu B, Guyot G (1988) A simple model for leaf optical properties in the visible and near infrared: application to the analysis of spectral shifts determinism. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence.Kluwer,Dordrecht, pp 345–351

    Google Scholar 

  • Baret F, Jacquemoud S, Guyot G, Leprieur C (1992) Modelled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sens Environ 41:133–142

    Article  Google Scholar 

  • Benedict HM, Swilder R (1961) Non destructive method for estimating chlorophyll content of leaves. Science 133:2015–2016

    Article  PubMed  CAS  Google Scholar 

  • Boochs F, Kupfer G, Dockter K, Kubaush K (1990) Shape of the red edge as vitality indicator for plants. Int J Remote Sens 11(10)1741,1753

    Article  Google Scholar 

  • Breece HT, Holmes RA (1971) Bidirectional scattering characteristics of healthy green soybeans and corn leaves in vivo. Appl Optics 10(1)119–127

    Article  Google Scholar 

  • Chang SH, Collins W (1983) Confirmation of the airborne biogeophysical mineral exploration technique using laboratory methods. Econ Geol 78:723–736

    Article  CAS  Google Scholar 

  • Collins W, Chang SH, Raines G, Canney F, Ashley R (1983) Airborne biogeophysical mapping of hidden mineral deposits. Econ Geol 78:737–749

    Article  CAS  Google Scholar 

  • Curcio J A, Petty CC (1951) The near infrared absorption spectrum of liquid water. J Opt Soc Am 41(5)302–304

    Article  CAS  Google Scholar 

  • Curran PJ (1989) Remote sensing of foliar chemistry. Remote Sens Environ 30:271–278

    Article  Google Scholar 

  • Dardenne P (1990) Contribution àl’utilisation de la spectrométrie dans l’infrarouge pour l’étude de critères de qualité des céréales et des fourrages. Faculté des Sciences Agronomiques, Gembloux, pp 1–173

    Google Scholar 

  • Dardenne P, Sinnaeve G, Biston R, Lecomte P (1991) Evaluation of NIT for predicting fresh forage quality. 4th Int NIRS Conf, Aberdeen

    Google Scholar 

  • Demetriades-Shah TH, Steven MD (1988) High spectral resolution indices for monitoring crop growth and chlorosis. 4th Int Colloq Spectral signatures of objects in remote sensing, 18-22 Jan, Aussois, ESA SP-287

    Google Scholar 

  • Demetriades-Shah TH, Steven MD, Clark JA (1990) High resolution derivative spectra in remote sensing. Remote Sens Environ 33:55–64

    Article  Google Scholar 

  • deRosny G, Vanderhaghen R, Baret F, Equer B, Frangi JP (1995) A device for in situ measurements of leaf chlorophyll and carotenoid concentrations. In: Guyot G (ed)Photosynthesis and remote sensing. EARSel,Paris

    Google Scholar 

  • Ercoli L, Mariotti M, Masoni A, Massantini F (1993) Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. Eur J Agron 2(2)113–117

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19

    Article  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnich TV (ed) On the economy of plant form and function. Cambridge University Press, New York, pp 25–55

    Google Scholar 

  • Fourty T, Baret F (1996) Biochemical composition estimates from fresh leaf near infrared transmittance or reflectance spectra using the stepwise regression. Effect of the instrumental noise. Remote Sens Environ (Submitted)

    Google Scholar 

  • Fourty T, Baret F, Jacquemoud S, Schmuck G, Verdebout J (1996) Leaf optical properties with explicite 226 F. Baret and Th. Fourty description of its biochemical composition: direct and inverse problems.Remote Sens Environ 56:104–117

    Article  Google Scholar 

  • Green RO, Conel JE, Bregge CJ, Margolis JS, Carrere V, Vane G, Hoover G (1992) In-Flight calibration of the spectral and radiometric characteristics of AVIRIS in 1991. 3rd Annu JPL Airborne Geoscience Worksh, 1-2 June, Pasadena

    Google Scholar 

  • Grossman YL, Ustin SL, Jacquemoud S, Sanderson E, Schmuck G, Verdebout J (1995) Critique of stepwise linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens Environ 56:182–193

    Article  Google Scholar 

  • Hardacre AK, Nicolson HF, Boyce MLP (1984) A portable photometer for the measurement of chlorophyll in intact leaves. NZJ Exp Agric 12:357–362

    Google Scholar 

  • Hardwick K, Baker NR (1973) In vivo measurement of Chlorophyll content of leaves. New Phytol 72:51–54

    Article  CAS  Google Scholar 

  • Hosgood B, Jacquemoud S, Andreoli G, Verdebout J, Pedrini G, Schmuck G (1995) Leaf optical properties experiment 93 (LOPEX93). European Commission, Joint Research Center, Institute of Remote Sensing Applications, Ispra, Italy

    Google Scholar 

  • Hruschka WR (1987) Data analysis: wavelength selection methods. Williams PC Norris KH Near infrared technology in the agricultural and food industries. Chap 3, American Association of Cereal Chemists, St Paul

    Google Scholar 

  • Jacquemoud S (1993) Inversion of the PROSPECT + SAIL canopy reflectance model from AVIRIS equivalent spectra: theoretical study. Remote Sens Environ 44:281–292

    Article  Google Scholar 

  • Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91

    Article  Google Scholar 

  • Jacquemoud S, Baret F, Andrieu B, Danson M, Jaggard K (1995) Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL model on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens Environ 52:163–172

    Article  Google Scholar 

  • Macnicol PK, Dudzinski ML, Condon BN (1976) Estimation of chlorophyll in tobacco leaves by direct photometry. Ann Bot 40:143–152

    CAS  Google Scholar 

  • Malthus TJ (1990) Anglo-French collaborative reflectance experiment. Experiment I, Broom’s Barn Experimental Station, July 1989. INRA bioclimatologie, BP 91, 84143 Montfavet France

    Google Scholar 

  • Markham BL, Barker JL (1985) Spectral characteristics of the LANDS AT Thematic Mapper sensors. Int J Remote Sens 6(5)597–716

    Article  Google Scholar 

  • Marten GC, Shenk JS, Barton FE (1989) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality, vol 643. US Department of Agriculture Handbook,Washington, DC, pp 1–96

    Google Scholar 

  • Miller JR, Hare EW, Neville RA, Gauthier RP, McColl D, Till SM (1985) Correlation of metal concentration with anomalies in narrow band multispectral imagery of the vegetation red reflectance edge. 4th Int Symp Remote sensing of environment, 1-4 April, San Francisco

    Google Scholar 

  • Miller JR, Hare EW, Wu J (1990) Quantitative characterization of the vegetation red edge reflectance. 1. An inverted-gaussian model. Int J Remote Sens 11(10)1755–1773

    Article  Google Scholar 

  • Milton NM, Mouat DA (1989) Remote sensing of vegetation responses to natural and cultural environmental conditions. Photogramm Engin Remote Sens 55(8)1167–1173

    Google Scholar 

  • Minolta Camera Co (1991) Manual for chlorophyll meter SPAD-502. Minolta Camera, Osake

    Google Scholar 

  • Peng S, Garcia FV, Laza RC, Cassman KG (1993) Adjustment for specific leaf weight improves chlorophyll meter’s estimate of rice leaf nitrogen concentration. Agron J 85:987–990

    Article  CAS  Google Scholar 

  • Penuelas J, Filella I, Baret F (1994) Semi-empirical indices to assess carotenoids/chlorophyll ratio from leaf spectral reflectance. Photosynthetica 31(2)221–230

    Google Scholar 

  • Rock BN, Miller JR, Moss DM, Freemantle JR, Boyer MJ (1990) Spectral characterization of forest damage occurring on Whiteface Mountain (NY) - studies with the fluorescence line imager (FLI) and ground-based spectrometers. In: Proc SPIE Conf, Technical Symp on Optical engineering and photonics in aerospace sensing, 16-20 April, Orlando. Imaging spectroscopy of the terrestrial environment, SPIE 1298, pp 190–201

    Google Scholar 

  • Rummelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rummelhart DMc Clelland J (eds) Parallel data processing, vol 1. MIT Press, Cambridge, pp 318–362

    Google Scholar 

  • Spomer LA, Smith MAL, Sawwan JS (1988) Rapid nondestructive measurement of chlorophyll content in leaves with nonuniform chlorophyll distribution. Photosynth Res 16:277–284

    Article  CAS  Google Scholar 

  • Turner FT, Jund MF (1991) Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agron J 83:926–928

    Article  CAS  Google Scholar 

  • Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141

    Article  Google Scholar 

  • Verhoef W (1985) Earth observation modeling based on layer scattering matrices. Remote Sens Environ 17:165–178

    Article  Google Scholar 

  • Wallihan EF (1973) Portable reflectance meter for estimating chlorophyll concentrations in leaves. Agron J 65:659–662

    Article  Google Scholar 

  • Williams PC, Norris KH (1987) Near infrared technology in agricultural and food industries. American Association of Cereal Chemists, St Paul, 330 pp

    Google Scholar 

  • Yadava VL (1986) A rapid non-destructive method to determine chlorophyll in intact leaves. Hortic Sci 21(6)1449–1450

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baret, F., Fourty, T. (1997). Radiometric Estimates of Nitrogen Status of Leaves and Canopies. In: Lemaire, G. (eds) Diagnosis of the Nitrogen Status in Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60684-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60684-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64506-8

  • Online ISBN: 978-3-642-60684-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics