Skip to main content

Function and Characterization of Poly(A)-Specific 3´ Exoribonucleases

  • Chapter
Cytoplasmic fate of messenger RNA

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 18))

Abstract

Poly(A) tails are commonly found at the 3´ end of various classes of RNA (reviewed in Brawerman 1981; Manley 1995b). They are evolutionarily widespread and appear on RNAs of several different organisms. In mammalian cells almost all mRNAs end with an approximately 200-adenosine-residue-long poly(A) tail. Poly(A) tails are also found on RNAs of other eukaryotes, including both metazoans and protozoa, as well as on RNAs of prokaryotes. However, the functional significance of the poly(A) tail is still under debate, and a single primary function for it is not evident. Instead, it seems likely that the poly(A) tail serves multiple biological functions linked to the processes of mRNA translation, turnover, and transport (Brawerman 1981; Jackson and Standart 1990; Munroe and Jacobson 1990b; Wickens 1990; Sachs and Wahle 1993; Beelman and Parker 1995; Cohen 1995; Curtis et al. 1995; Manley 1995b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham AK, Jacob ST (1978) Hydrolysis of poly(A) to adenine nucleotides by purified poly(A) polymerase. Proc Natl Acad Sci USA 75: 2085–2087

    PubMed  CAS  Google Scholar 

  • Abraham AK, Pihl A (1978) Formation of ATP from the poly-adenylated region of eukaryotic messenger RNAs. FEBS Lett 87: 121–124

    PubMed  CAS  Google Scholar 

  • Abraham AK, Pihl A, Jacob ST (1980) Turnover of the poly(A) moiety of mRNA in wheat-germ extract. Eur J Biochem 110: 1–5

    PubMed  CAS  Google Scholar 

  • Anderson EP, Heppel LA (1960) Purification and properties of a leukemic cell phosphodiesterase. Biochim Biophys Acta 43: 79–89

    PubMed  CAS  Google Scholar 

  • Åström J (1995) Polyadenylation and deadenylation of messenger RNA in eukaryotic cells. Thesis at Uppsala Univ Fac Sci Technol

    Google Scholar 

  • Åström J, Åström A, Virtanen A (1991) In vitro deadenylation of mammalian mRNA by a HeLa cell 3´ exonuclease. EMBO J 10: 3067–3071

    PubMed  Google Scholar 

  • Åström J, Åström A, Virtanen A (1992) Properties of a HeLa cell 3´ exonuclease specific for degrading poly(A) tails of mammalian mRNA. J Biol Chem 267: 18154–18159

    PubMed  Google Scholar 

  • August T, Oritz PJ, Hurwitz J (1962) Ribonucleic acid-dependent ribonucleotide incorporation. J Biol Chem 237: 3786–3793

    PubMed  CAS  Google Scholar 

  • Bachmann M, Schröder HC, Messer R, Müller WEG (1984) Basespecific ribonucleases potentially involved in heterogeneous nuclear RNA processing and poly(A) metabolism. FEBS Lett 171: 25–30

    PubMed  CAS  Google Scholar 

  • Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81: 179–185

    PubMed  CAS  Google Scholar 

  • Bernstein P, Ross J (1989) Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem Sci 14: 373–377

    PubMed  CAS  Google Scholar 

  • Bernstein P, Peltz SW, Ross J (1989) The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol Cell Biol 9: 659–670

    PubMed  CAS  Google Scholar 

  • Bienroth S, Wahle E, Suteer-Crazzolara C, Keller W (1991) Purification of the cleavage and polyadenylation factor involved in the 3´-processing of messenger RNA precursors. J Biol Chem 266: 19768–19776

    PubMed  CAS  Google Scholar 

  • Bienroth S, Keller W, Wahle E (1993) Assembly of a processive messenger RNA polyadenylation complex. EMBO J 12: 585–594

    PubMed  CAS  Google Scholar 

  • Bilger A, Fox CA, Wahle E, Wickens M (1994) Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev 8: 1106–1116

    PubMed  CAS  Google Scholar 

  • Boeck R, Tarun S, Rieger M, Deardorff JA, Müller-Auer S, Sachs AB (1996) The yeast Pan2 protein is required for poly(A)-binding proteinstimulated poly(A)-nuclease activity. J Biol Chem 271: 432–438

    PubMed  CAS  Google Scholar 

  • Bouvet P, Wolffe AP (1994) A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell 77: 931–941

    PubMed  CAS  Google Scholar 

  • Bouvet P, Paris J, Philippe M, Osborne HB (1991) Degradation of a developmentally regulated mRNA in Xenopus embryos is controlled by the 3´ region and requires the translation of another maternal mRNA. Mol Cell Biol 11: 3115–3124

    PubMed  CAS  Google Scholar 

  • Brawerman G (1981) The role of the poly(A) sequence in mamalian messenger RNA. Crit Rev Biochem 10: 1–38

    CAS  Google Scholar 

  • Brewer G, Ross J (1988) Poly(A) shortening and degradation of the 3´ A + U-rich sequences of human c-myc mRNA in a cell-free system. Mol Cell Biol 8: 1697–1708

    PubMed  CAS  Google Scholar 

  • Brewer G, Ross J (1990) Messenger RNA turnover in cell-free extracts. In: Dahlberg JE, Abelson JN (eds) Methods in enzymology, vol 181. Academic Press, San Diego, pp 202–203

    Google Scholar 

  • Campbell TA, Zlotnick GW, Neubert TA, Sacci JB, Gottlieb M (1991) Purification and characterization of the 3´-nucleotidase/nuclease from promastigotes of Leishmania donovani. Mol Biochem Parasitol 47: 109–118

    PubMed  CAS  Google Scholar 

  • Cao G-j, Sarkar N (1992a) Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci USA 89: 10380–10384

    CAS  Google Scholar 

  • Cao G-j, Sarkar N (1992b) Poly(A) RNA in Escherichia coli: nucleotide sequence at the junction of the lpp transcript and the polyadenylate moeity. Proc Natl Acad Sci USA 89: 7546–7550

    CAS  Google Scholar 

  • Caponigro G, Parker R (1995) Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev 9: 2421–2432

    PubMed  CAS  Google Scholar 

  • Carswell S, Alwine JC (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. Mol Cell Biol 9: 4248–4258

    PubMed  CAS  Google Scholar 

  • Caruccio N, Ross J (1994) Purification of a human polyribosome-associated 3´ to 5´ exoribonuclease. J Biol Chem 269: 31814–31821

    PubMed  CAS  Google Scholar 

  • Chen C-Y A, Shyu A-B (1994) Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol Cell Biol 14: 8471–8482

    PubMed  CAS  Google Scholar 

  • Chen J, Moore C (1992) Separation of factors required for cleavage and polyadenylation of yeast pre-messenger RNA. Mol Cell Biol 12: 3470–3481

    PubMed  CAS  Google Scholar 

  • Cohen SN (1995) Surprises at the 3´ end of prokaryotic RNA. Cell 80: 829–832

    PubMed  CAS  Google Scholar 

  • Curtis D, Lehmann R, Zamore PD (1995) Translational regulation in development. Cell 81: 171–178

    PubMed  CAS  Google Scholar 

  • Debrabant A, Gottlieb M, Dwyer DM (1995) Isolation and charachterization of the gene encoding the surface membrane 3´.nucleotidase/nuclease of Leishmania donovani. Mol Biochem Parasitol 71: 51–63

    PubMed  CAS  Google Scholar 

  • Decker CJ, Parker R (1994) Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci 19: 336–340

    PubMed  CAS  Google Scholar 

  • Dehlin E, Gabain A v, Alm G, Dingelmayer R, Resnekov O (1996) Repression of beta interferon gene expression in virus-induced cells is correlated with a poly(A) tail elongation. Mol Cell Biol 16: 468–474

    PubMed  CAS  Google Scholar 

  • Deutscher MP (1993) Ribonuclease multiplicity, diversity, and complexity, J Biol Chem 268: 13011–13014

    PubMed  CAS  Google Scholar 

  • DeZazzo JD, Imperiale MJ (1989) Sequences upstream of AAUAAA influence poly(A) site selection in a complex transcription unit. Mol Cell Biol 9: 4951–4961

    PubMed  CAS  Google Scholar 

  • Duval C, Bouvet P, Omilli F, Roghi C, Dorel C, et al. (1990) Stability of maternal mRNA in Xenopus embryos: role of transcription and translation. Mol Cell Biol 10: 4123–4129

    PubMed  CAS  Google Scholar 

  • Dworkin MB, Dworkin-Rastl E (1985) Changes in RNA titers and polyadenylation during oogenesis and oocyte maturation in Xenopus laevis. Dev Biol 112: 451–457

    PubMed  CAS  Google Scholar 

  • Dworkin MB, Dworkin-Rastl E (1990) Functions of maternal mRNA in early development. Mol Reprod Dev 26: 261–297

    PubMed  CAS  Google Scholar 

  • Fort P, Rech J, Piechaczyk M, Bonnieu A, Jeanteur P, Blanchard JM (1987) Regulation of c-fos gene expression in hamster fibroblasts: initiation and elongation of transcription and mRNA degradation. Nucl Acid Res 15: 5657–5667

    CAS  Google Scholar 

  • Fox CA, Wickens M (1990) Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3´ UTR of certain maternal mRNAs. Genes Dev 4: 2287–2298

    PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wickens MP (1989) Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev 3: 2151–2162

    PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wahle E, Wickens M (1992) Polyadenylation of maternal mRNA during oocyte maturation: poly(A) addition requires a regulated RNA binding activity and a poly(A) polymerase. EMBO J 11: 5021–5032

    PubMed  CAS  Google Scholar 

  • Fraser MJ, Low RL (1993) Fungal and mitochondrial nucleases. In: Linn SM, Lloyd RS, Roberts RJ (eds) Nucleases. Cold Spring Harbor Lab Press, Cold Spring Harbor, New York, pp 171–207

    Google Scholar 

  • Gallie DR (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5: 2108–2116

    PubMed  CAS  Google Scholar 

  • Gbenle GO, Dwyer DM (1992) Purification and properties of 3´nucleotidase of Leishmania donovani. Biochem J 285: 41–46

    PubMed  CAS  Google Scholar 

  • Gil A, Proudfoot NJ (1984) A sequence downstream of AAUAAA is required for rabbit ß -globin 3´ end formation. Nature 312: 473–474

    PubMed  CAS  Google Scholar 

  • Gil A, Proudfoot NJ (1987) Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit ß -globin mRNA 3´ end formation. Cell 49: 399–406

    PubMed  CAS  Google Scholar 

  • Gilmartin GM, Nevins JR (1991) Molecular analysis of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol Cell Biol 11: 2432–2438

    PubMed  CAS  Google Scholar 

  • Gottlieb M (1989) The surface membrane 3´-nucleotidase/nuclease of trypanosomatid protozoa. Parasitol Today 5: 257–260

    PubMed  CAS  Google Scholar 

  • Hajnsdorf E, Braun F, Haugel-Nielsen J, Régnier P (1995) Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli. Proc Natl Acad Sci USA 92: 3973–3977

    PubMed  CAS  Google Scholar 

  • Hake LE, Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79: 617–627

    PubMed  CAS  Google Scholar 

  • Hammond DJ, Gutteridge WE (1984) Purine and pyrimidine metabolism in the trypanosomatidae. Mol Biochem Parasitol 13: 243–261

    PubMed  CAS  Google Scholar 

  • He L, Söderbom F, Wagner EG, Binnie U, Binns N, Masters M (1993) PcnB is required for the rapid degradation of RNAI, the antisense RNA that controls the copy number of ColEl-related Plasmids. Mol Microbiol 9: 1131–1142

    PubMed  CAS  Google Scholar 

  • Huarte J, Belin D, Vassalli A, Strickland S, Vassalli J-D (1987) Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes Dev 1: 1201–1211

    PubMed  CAS  Google Scholar 

  • Huarte J, Stutz A, Oconnell ML, Gubler P, Belin D, et al. (1992) Transient translational silencing by reversible messenger RNA deadenylation. Cell 69: 1021–1030

    PubMed  CAS  Google Scholar 

  • Hyman LE, Wormington WM (1988) Translational inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation. Genes Dev 2: 598–605

    PubMed  CAS  Google Scholar 

  • Iizuka N, Najita L, Franzusoff A, Sarnow P (1994) Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14: 7322–7330

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Standart N (1990) Do the poly(A) tail and 3´ untranslated region control mRNA translation? Cell 62: 15–24

    PubMed  CAS  Google Scholar 

  • Jenny A, Hauri H-P, Keller W (1994) Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunit. Mol Cell Biol 14: 8183–8190

    PubMed  CAS  Google Scholar 

  • Kelly KO, Deutscher MP (1992) The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. J Bacteriol 174: 6682–6684

    PubMed  CAS  Google Scholar 

  • Kuge H, Richter JD (1995) Cytoplasmic 3´ poly(A) addition induces 5´ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J 14: 6301–6310

    PubMed  CAS  Google Scholar 

  • Kumagai H, Igarashi K, Tanaka K, Nakao H, Hirose S (1979) A microsomal exoribonuclease from rat liver. Biochim Biophys Acta 566: 192–199

    PubMed  CAS  Google Scholar 

  • Kumagai H, Abiko T, Ono C, Marumo Y, Enomoto S, et al. (1985) Purification and mode of action of a microsomal endoribonuclease from rat liver. Biochim Biophys Acta 827: 424–430

    PubMed  CAS  Google Scholar 

  • Kwan CN (1977) A cytoplasmic exoribonuclease from HeLa cells. Biochim Biophys Acta 479: 322–331

    PubMed  CAS  Google Scholar 

  • Lagnado CA, Brown CY, Goodall GJ (1994) AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol 14: 7984–7995

    PubMed  CAS  Google Scholar 

  • Lazarus HM, Sporn MB (1967) Purification and properties of a nuclear exoribonuclease from Ehrlich ascites tumor cells. Proc Natl Acad Sci USA 57: 1386–1393

    PubMed  CAS  Google Scholar 

  • Lazarus HM, Sporn MB, Bradley DF (1968) A new kinetic model for polynucleotide metabolism. Proc Natl Acad Sci USA 60: 1503–1510

    PubMed  CAS  Google Scholar 

  • Legagneux V, Bouvet P, Omilli F, Chevalier S, Osborne HB (1992) Identification of RNA-binding proteins specific to Xenopus Eg maternal mRNAs: association with the portion of Eg2 mRNA that promotes deadenylation in embryos. Development 116: 1193–1202

    PubMed  CAS  Google Scholar 

  • Littauer UZ, Soreq H (1982) Polynucleotide Phosphorylase. In: Boyer PD (ed) The enzymes, vol XV Academic Press, New York, pp 517–553

    Google Scholar 

  • Lowell JE, Rudner DZ, Sachs AB (1992) 3´-UTR-dependent deadenylation by the yeast poly(A) nuclease. Genes Dev 6:2088–2099

    Google Scholar 

  • Manley JL (1995a) A complex protein assembly catalyzes polyadenylation of mRNA precursors. Curr Biol 5: 222–228

    CAS  Google Scholar 

  • Manley JL (1995b) Messenger RNA polyadenylylation: a universal modification. Proc Natl Acad Sci USA 92: 1800–1801

    CAS  Google Scholar 

  • McGrew LL, Richter JD (1990) Translational contol by cytoplasmatic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.EMBO J 9: 3743–3751

    CAS  Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3: 803–815

    PubMed  CAS  Google Scholar 

  • McLauchlan J, Gaffney D, Whitton JL, Clements JB (1985) The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3´ termini. Nucl Acids Res 13: 1347–1368

    PubMed  CAS  Google Scholar 

  • Minvielle-Sebastia L, Preker PJ, Keller W (1994) RNA 14 and RNA 15 proteins as components of a yeast pre-mRNA 3´-end processing factor. Science 266: 1702–1705

    PubMed  CAS  Google Scholar 

  • Moore CL, Sharp PA (1985) Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell 41: 845–855

    PubMed  CAS  Google Scholar 

  • Muhlrad D, Parker R (1992) Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev 6: 2100–2111

    PubMed  CAS  Google Scholar 

  • Munroe D, Jacobson A (1990a) mRNA poly(A) tail, a 3´ enhancer of translational initiation. Mol Cell Biol 10:3441–3455

    Google Scholar 

  • Munroe D, Jacobson A (1990b) Tales of poly(A): a review. Gene 91: 151–158

    CAS  Google Scholar 

  • Murthy KGK, Manley JL (1992) Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem 267: 14804–14811

    PubMed  CAS  Google Scholar 

  • Murthy KGK, Manley JL (1995) The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3´-end formation. Genes Dev 9: 2672–2683

    PubMed  CAS  Google Scholar 

  • Müller WEG (1976) Endoribonuclease IV A poly(A)-specific ribonuclease from chick oviduct 1. Purification of the enzyme. Eur J Biochem 70: 241–248

    PubMed  Google Scholar 

  • Müller WEG, Seibert G, Steffen R, Zahn RK (1976) Endoribonuclease IV. 2. Further investigation on the specificity. Eur J Biochem 70: 249–258

    PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Zahn RK, Dose K (1980) Degradation of 2´-5´-linked oligoribo-adenylates by 3´-exoribonuclease and 5´-nucleotidase from calf thymus. Hoppe-Seyler’s Z Physiol Chem 361: 469–472

    PubMed  Google Scholar 

  • Nakazato H, Venkatesan S, Edmonds M (1975) Polyadenylic acid sequences in E. coli messenger RNA. Nature 256: 144–146

    PubMed  CAS  Google Scholar 

  • Nemeth A, Krause S, Blank D, Jenny A, Jenö P, et al. (1995) Isolation of genomic and cDNA clones encoding bovine poly(A) binding protein II. Nucl Acids Res 23: 4034–4041

    PubMed  CAS  Google Scholar 

  • Neubert TA, Gottlieb M (1990) An inducible 3´-nucleotidase/nuclease from the trypanosomatid Crithidia luciliae. Purification and characterization. J Biol Chem 265: 7236–7242

    PubMed  CAS  Google Scholar 

  • O’Hara EB, Chekanova JA, Ingle CA, Kushner ZR, Peters E, Kushner SR (1995) Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci USA 92: 1807–1811

    PubMed  Google Scholar 

  • Paris J, Philippe M (1990) Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development. Dev Biol 140: 221–224

    PubMed  CAS  Google Scholar 

  • Paris J, Swenson K, Piwnica-worms H, Richter JD (1991) Maturation-specific polyadenylation: in vitro activation by p34cdc2 and phosphorylation of a 58-kD CPE-binding protein. Genes Dev 5: 1697–1708

    PubMed  CAS  Google Scholar 

  • Proudfoot N (1991) Poly(A) signals. Cell 64: 671–674

    CAS  Google Scholar 

  • Proudfoot NJ, Brownlee GG (1976) 3´ non-coding region sequences in eukaryotic messenger RNA. Nature 263:211–214

    Google Scholar 

  • Rahmsdorf HH, Schönthal A, Angel P, Litfin M, Ruther U, Herrlich P (1987) Post-transcriptional regulation of c-fos mRNA expression. Nucl Acid Res 15: 1643–1659

    CAS  Google Scholar 

  • Regnier P, Grunberg-Manago M, Portier C (1987) Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide Phosphorylase. J Biol Chem 262: 63–68

    PubMed  CAS  Google Scholar 

  • Richter JD (1991) Translational control during early development. BioEssays 13: 179–183

    PubMed  CAS  Google Scholar 

  • Rose KM, Jacob ST, (1976) Nuclear poly(A) polymerase from rat liver and a hepatoma. Eur J Biochem 67: 11–21

    PubMed  CAS  Google Scholar 

  • Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59:423–450

    Google Scholar 

  • Ross J, Kobs G (1986) H4 histone mRNA decay in cell-free extracts initiates at or near the 3´ terminus and proceeds 3´ to 5´. J Mol Biol 188: 579–593

    PubMed  CAS  Google Scholar 

  • Russo P, Li WZ, Guo Z, Sherman F (1993) Signals that produce 3´ termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae. Mol Cell Biol 13: 7836–7849

    PubMed  CAS  Google Scholar 

  • Sachs A (1993) Messenger RNA degradation in eukaryotes. Cell 74: 413–421

    PubMed  CAS  Google Scholar 

  • Sachs A, Wahle E (1993) Poly(A) tail metabolism and function in eucaryotes. J Biol Chem 268: 22955–22958

    PubMed  CAS  Google Scholar 

  • Sachs AB, Davis RW (1989) The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58: 857–867

    PubMed  CAS  Google Scholar 

  • Sachs AB, Deardorff JA (1992) Translation initiation requires the PAB-dependent poly(A) ribo-nuclease in yeast. Cell 70: 961–973

    PubMed  CAS  Google Scholar 

  • Sachs AB, Deardorff JA (1995) Translation initiation requires the PAB-dependent poly(A) ribo-nuclease in yeast (Erratum). Cell 83 /6

    Google Scholar 

  • Schröder HC, Dose K, Zahn RK, Müller WEG (1980a) Isolation and characterization of the novel polyadenylate- and polyuridylate- degrading acid endoribonuclease V from calf thymus. J Biol Chem 255: 5108–5112

    Google Scholar 

  • Schröder HC, Zahn RK, Dose K, Müller WEG (1980b) Purification and characterization of a poly(A)-specific exoribonuclease from calf thymus. J Biol Chem 255: 4535–4538

    Google Scholar 

  • Sheets MD, Wickens M (1989) Two phases in the addition of a poly(A) tail. Genes Dev 3: 1401–1412

    PubMed  CAS  Google Scholar 

  • Sheets MD, Ogg SC, Wickens MP (1990) Point mutations in AAUAAA and the poly(A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucl Acids Res 18: 5799–5805

    PubMed  CAS  Google Scholar 

  • Sheets MD, Fox CA, Hunt T, Woude GV, Wickens M (1994) The 3´-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev 8: 926–938

    PubMed  CAS  Google Scholar 

  • Shen V, Schlessinger D (1982) RNases, I, II, and IV of Escgerichia coli. In: Boyer PD(ed) The enzymes, vol XV Academic Press, New York, pp 501–515

    Google Scholar 

  • Shyu A-B, Greenberg ME, Belasco JG (1989) The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev 3: 60–72

    PubMed  CAS  Google Scholar 

  • Shyu A-B, Belasco JG, Greenberg ME (1991) Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev 5: 221–231

    PubMed  CAS  Google Scholar 

  • Simon R, Richter JD (1994) Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins. Mol Cell Biol 14: 7867–7875

    PubMed  CAS  Google Scholar 

  • Simon R, Tassan J-P, Richter JD (1992) Translational control by poly(A) elongation during Xenopus development: differentail represión and enhancement by a novel cytoplasmic polyadenylation element. Genes Dev 6: 2580–2591

    PubMed  CAS  Google Scholar 

  • Sporn MB, Lazarus HM, Smith JM, Henderson WR (1969) Studies on nuclear exoribonucleases. III. Isolation and properties of the enzyme form normal and malignant tissues of the mouse. Biochemistry 8: 1698–1705

    PubMed  CAS  Google Scholar 

  • Srinivasan PR, Rmanarayanan M, Rabbani E (1975) Presence of polyriboadenylate sequences in pulse-labeled RNA of Escherichia coli. Proc Natl Acad Sci USA 72: 2910–2914

    PubMed  CAS  Google Scholar 

  • Takagaki Y, Manley JL, MacDonald CC, Wilusz J, Shenk T (1990) A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev 4: 2112–2120

    PubMed  CAS  Google Scholar 

  • Tarui Y, Minamikawa T (1989) Poly(A) polymerase from Vigna unguiculata seedlings. A bi-functional enzyme responsible for both poly(A)-polymerizing and poly(A)-hydrolyzing activities. Eur J Biochem 186: 591–596

    PubMed  CAS  Google Scholar 

  • Tarun SZ, Sachs AB (1995) A common function for mRNA 5´ and 3´ ends in translation initiation in yeast. Genes Dev 9: 2997–3007

    PubMed  CAS  Google Scholar 

  • Varnum SM, Wormington WM (1990) Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis -sequences: a default mechanism for translational control. Genes Dev 4: 2278–2286

    PubMed  CAS  Google Scholar 

  • Varnum SM, Hurney CA, Wormington WM (1992) Maturation-specific deadenylation in Xenopus oocytes requires nuclear and cytoplasmic factors. Dev Biol 153: 283–290

    PubMed  CAS  Google Scholar 

  • Vassalli J-D, Huarte J, Belin D, Gubler P, Vassalli A, et al. (1989) Regulated polyadenylation controls mRNA translation during meiotic maturation of mouse oocytes. Genes Dev 3: 2163–2171

    PubMed  CAS  Google Scholar 

  • Virtanen A (1995) Strategies for regulating nuclear pre-mRNA polyadenylation. In: Lammond AI (ed) pre-mRNA processing. Landes, Austin, pp 135–149

    Google Scholar 

  • Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48: 713–742

    PubMed  CAS  Google Scholar 

  • Wahle E (1991a) A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66: 759–768

    CAS  Google Scholar 

  • Wahle E (1991b) Purification and characterization of a mamalian polyadenylate polymerase involved in the 3´ end processing of messenger RNA precursors. J Biol Chem 266: 3131–3139

    CAS  Google Scholar 

  • Wahle E (1995) 3´-end cleavage and polyadenylation of mRNA precursors. Biochim Biophys Acta 1261:183–194

    Google Scholar 

  • Wahle E, Keller W (1992) The biochemistry of 3´-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61: 419–440

    PubMed  CAS  Google Scholar 

  • Wickens M (1990) In the beginning is the end: regulation of poly(A) addition and removal during early development. Trends Biochem Sci 15: 320–324

    PubMed  CAS  Google Scholar 

  • Wickens M (1992) Forward, backward, how much, when: mechanisms of poly(A) addition and removal and their role in early development. Semin Dev Biol 3: 399–412

    Google Scholar 

  • Wigley PL, Sheets MD, Zarkower DA, Whitmer ME, Wickens M (1990) Polyadenylation of mRNA: minimal substrates and a requirement for the 2´ hydroxyl of the U in AAUAAA. Mol Cell Biol 10: 1705–1713

    PubMed  CAS  Google Scholar 

  • Wilson T, Treisman R (1988) Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3´ AU-rich sequences. Nature 336: 396–399

    PubMed  CAS  Google Scholar 

  • Wormington M (1994) Unmasking the role of the 3´ UTR in the cytoplasmic polyadenylation and translational regulation of maternal mRNAs. BioEssays 16: 533–535

    PubMed  CAS  Google Scholar 

  • Xu F, Cohen SN (1995) RNA degradation in Escherichia coli regulated by 3´ adenylylation and 5´ phosphorylation. Nature 374: 180–183

    PubMed  CAS  Google Scholar 

  • Xu F, Lin-Chao S, Cohen SN (1993) The Escerichia coli pcnB gene promotes adenylylation of antisense RNAI of Co1E1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci USA 90: 6756–6760

    PubMed  CAS  Google Scholar 

  • Zaniewski R, Petkaitis E, Deutscher MP (1984) A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D and RNase BN. J Biol Chem 259: 11651–11653

    PubMed  CAS  Google Scholar 

  • Zilhao R, Camelo L, Arraiano CM (1993) DNA sequencing and expression of the gene rnb encoding Escherichia coli ribonuclease II. Mol Microbiol 8: 43–51

    PubMed  CAS  Google Scholar 

  • Zubiaga AM, Belasco JG, Greenberg ME (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15: 2219–2230

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Virtanen, A., Åström, J. (1997). Function and Characterization of Poly(A)-Specific 3´ Exoribonucleases. In: Jeanteur, P. (eds) Cytoplasmic fate of messenger RNA. Progress in Molecular and Subcellular Biology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60471-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60471-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64420-7

  • Online ISBN: 978-3-642-60471-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics