Skip to main content

Translational Control by Polyadenylation During Early Development

  • Chapter
Cytoplasmic fate of messenger RNA

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 18))

Abstract

The basic molecular mechanisms that control gene expression are the same in germ cells and somatic cells. One of the peculiarities of early development, however, is that the crossing of certain checkpoints is associated with changes in the principal mode of control of gene expression. Hence, during early development specific, modes of gene regulation acquire a particular importance whereas in somatic cells they appear more as part of an ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ballantine JEM, Woodland HR, Sturgess EA (1979) Changes in protein synthesis during development of Xenopus laevis. J Embryol Exp Morphol 51: 135–153

    Google Scholar 

  • Ballantyne S, Bilger A, Astrom J, Virtanen A, Wickens M (1995) Poly(A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA 1: 64–78

    PubMed  CAS  Google Scholar 

  • Bassez T, Paris J, Omilli F, Dorel C, Osborne HB (1990) Post-Transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. Development 110: 955–962

    PubMed  CAS  Google Scholar 

  • Bilger A, Fox CA, Wahle E, Wickens M (1994) Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev 8: 1106–1116

    PubMed  CAS  Google Scholar 

  • Bouvet P, Wolffe AP (1994) A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell 77: 931–941

    PubMed  CAS  Google Scholar 

  • Bouvet P, Omilli F, Arlot-Bonnemains Y, Legagneux V, Roghi C, Bassez T, Osborne HB (1994) The deadenylation conferred by the 3´ untranslated region of a developmentally controlled mRNA in Xenopus embryos is switched to polyadenylation by deletion of a short sequence element. Mol Cell Biol 14: 1893–1900

    PubMed  CAS  Google Scholar 

  • Bouvet P, Matsumoto K, Wolffe AP (1995) Sequence specific RNA recognition by the Xenopus Y-box proteins: an essential role for the cold shock domain. J Biol Chem 270: 28297–28303

    PubMed  CAS  Google Scholar 

  • Brandhorst BP (1976) Two-dimensional gel patterns of protein synthesis before and after fertilisation of sea urchin eggs. Dev Biol 52: 310–317

    PubMed  CAS  Google Scholar 

  • Browder LW (1984) Developmental biology. Saunders, Japan

    Google Scholar 

  • Caldwell DC, Emerson CP (1985) The role of cap methylation in the translational activation of stored maternal histone mRNA in sea urchin embryos. Cell 42: 691–700

    PubMed  CAS  Google Scholar 

  • Cascio SM, Wassarman PM (1982) Program of early development in the mammal: post-transcriptional control of a class of proteins synthesized by mouse oocytes and early embryos. Dev Biol 89: 427–439

    Google Scholar 

  • Christersen LB, McKearin DM (1994) orb is required for anteroposterior dorsoventral patterning during Drosophila oogenesis. Genes Dev 8:614–628

    Google Scholar 

  • Crawford DR, Richter JD (1987) An RNA-binding protein from Xenopus oocytes is associated with specific message sequences. Development 101: 741–749

    PubMed  CAS  Google Scholar 

  • Cummings A, Sommerville J (1988) Protein kinase activity associated with stored messenger ribonucleoprotein particles of Xenopus oocytes. J Cell Biol 107: 45–56

    PubMed  CAS  Google Scholar 

  • Dale L, Matthews G, Tabe L, Coiman A (1989) Developmental expression of the protein product of Vg1, a localized maternal mRNA in the frog Xenopus laevis. EMBO J 8: 1057–1065

    PubMed  CAS  Google Scholar 

  • Darnbrough C, Ford P (1981) Identification in Xenopus laevis of a class of oocyte specific proteins bound to messenger RNA. Eur J Biochem 113: 415–424

    PubMed  CAS  Google Scholar 

  • Davidson EH (1986) Gene activity in early development. Academic Press, New York

    Google Scholar 

  • Duval C, Bouvet P, Omilli F, Roghi C, Dorel C, LeGuellec R, Paris J, Osborne HB (1990) Stability of maternal mRNA in Xenopus embryos: role of transcription and translation. Mol Cell Biol 10: 4123–4129

    PubMed  CAS  Google Scholar 

  • Dworkin MB, Dworkin-Rastl E (1985) Changes in RNA titers and polyadenylation during oogenesis and oocyte maturation in Xenopus laevis. Dev Biol 112: 451–457

    PubMed  CAS  Google Scholar 

  • Dworkin MB, Shrutkowski A, Dworkin-Rastl E (1985) Mobilization of specific maternal RNA species into polysomes after fertilization in Xenopus laevis. Proc Natl Acad Sci USA 82: 7636–7640

    PubMed  CAS  Google Scholar 

  • Edgar BA, Schubiger G (1986) Parameters controlling transcriptional activation during early Drosophila development. Cell 44: 871–877

    PubMed  CAS  Google Scholar 

  • Epel D (1967) Protein synthesis in sea urchin eggs: a “late” response to fertilization. Proc Natl Acad Sci USA 57: 889–906

    Google Scholar 

  • Fox CA, Wickens M (1990) Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3´ UTR of certain maternal mRNAs. Genes Dev 4: 2287–2298

    PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wickens M (1989) Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev 3: 2151–2162

    PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wahle E, Wickens M (1992) Polyadenylation of maternal mRNA during oocyte maturation: poly(A) addition in vitro requires a regulated RNA binding activity and a poly(A) polymerase. EMBO J 11: 5021–5032

    PubMed  CAS  Google Scholar 

  • Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M, Justesen J, Kisselev L (1994) A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372: 701–703

    PubMed  CAS  Google Scholar 

  • Gallie DR (1991) The cap and poly(A) tail function synergistically to regulate mRNA translation efficiency. Genes Dev 5: 2108–2116

    PubMed  CAS  Google Scholar 

  • Gallie DR, Tanguay R (1994) Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J Biol Chem 269: 17166–17173

    PubMed  CAS  Google Scholar 

  • Gallie G, Kawata E, Smith LD, Larkins BA (1988) Role of the 3´-poly(A) sequence in translational regulation of mRNAs in Xenopus laevis oocytes. J Biol Chem 263: 5764–5770

    Google Scholar 

  • Gavis ER, Lehmann R (1994) Translational regulation of nanos by RNA localization. Nature 369: 315–318

    PubMed  CAS  Google Scholar 

  • Gebauer F, Richter JD (1995) Cloning and characterization of a Xenopus poly(A) polymerase. Mol Cell Biol 15: 1422–1430

    PubMed  CAS  Google Scholar 

  • Gebauer F, Xu W, Cooper GM, Richter JD (1994) Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J 13: 5712–5720

    PubMed  CAS  Google Scholar 

  • Grossi de Sa MF, Standart N, Martins de Sa C, Akhayat O, Huesca M, Scherrer K (1988) The poly(A)-binding protein facilitates in vitro translation of poly(A)-rich mRNA. Eur J Biochem 176: 521–526

    PubMed  CAS  Google Scholar 

  • Hake LE, Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79: 617–627

    PubMed  CAS  Google Scholar 

  • Herschman HR (1991) Primary response genes induced by growth factors and tumor promotors. Annu Rev Biochem 60: 281–319

    PubMed  CAS  Google Scholar 

  • Huarte J, Belin D, Vassalli JD (1985) Plasminogen activator in mouse and rat oocytes: induction during meiotic maturation. Cell 43: 551–558

    PubMed  CAS  Google Scholar 

  • Huarte J, Belin D, Vassalli A, Strickland S, Vassalli JD (1987) Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes Dev 1: 1201–1211

    PubMed  CAS  Google Scholar 

  • Huarte J, Stutz A, O’Connel ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli JD (1992) Transient translational silencing by reversible mRNA deadenylation. Cell 69: 1021–1030

    PubMed  CAS  Google Scholar 

  • Hyman LE, Wormington WM (1988) Translational inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation. Genes Dev 2: 598–605

    PubMed  CAS  Google Scholar 

  • Hyman LE, Colot HV, Rosbash M (1984) Accumulation and behaviour of mRNA during oogenesis and early embryogenesis of Xenopus laevis. In: Malicinsk GM, Klein WH (ed) Molecular aspects of early development. Plenum Press, New York, pp 253–266

    Google Scholar 

  • Jenkins NA, Kaumeyer JF, Young EM, Raff RA (1978) A test for masked messages: the template activity of messenger of ribonucleoprotein particles isolated from sea urchin eggs. Dev Biol 63: 279–298

    PubMed  CAS  Google Scholar 

  • Kick D, Barett P, Cummings A, Sommerville J (1987) Phosphorylation of a 60-kDa polypeptide from Xenopus oocytes blocks messenger RNA translation. Nucl Acids Res 15: 4099–4109

    PubMed  CAS  Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by Bruno, an ovarian RNA-binding protein, is essential. Cell 81: 403–412

    PubMed  CAS  Google Scholar 

  • Kuge H, Inoue A (1992) Maturation of Xenopus laevis oocyte by progesterone requires poly(A) tail elongation of mRNA. Exp Cell Res 202: 52–58

    PubMed  CAS  Google Scholar 

  • Kuge H, Richter JD (1995) Cytoplasmic 3´poly(A) addition induces 5´cap ribose methylation: implications for translational control of maternal mRNA, EMBO J 14: 6301–6310

    PubMed  CAS  Google Scholar 

  • Kuhn R, Kuhn C, Borsch D, Glazer KH, Schafer U, Schafer M (1991) A cluster of four genes selectively expressed in the male germ line of Drosophila melanogaster. Mech Dev 35: 143–151

    PubMed  CAS  Google Scholar 

  • Lantz V, Ambrosio L, Schedi P (1992) The drosophila orb gene is predicted to encode sex-specific germline RNA-binding proteins and has localized transcripts in ovaries and early embryos. Development 115: 75–88

    PubMed  CAS  Google Scholar 

  • Laskey RA, Mills AD, Gurdon JB, Partington GA (1977) Protein synthesis in oocytes of Xenopus laevis is not regulated by the supply of messenger RNA. Cell 11: 345–351

    PubMed  CAS  Google Scholar 

  • Legagneux V, Bouvet P, Omilli F, Chevalier S, Osborne HB (1992) Identification of RNA-binding proteins specific to Xenopus Eg maternal mRNAs: association with the portion of Eg2 mRNA that promotes deadenylation in embryos. Development 116: 1193–1202

    PubMed  CAS  Google Scholar 

  • Legagneux V, Omilli F, Osborne HB (1995) Substrate-specific regulation of RNA deadenylation in Xenopus embryo and activated egg extracts. RNA 1: 1001–1008

    PubMed  CAS  Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3: 803–815

    PubMed  CAS  Google Scholar 

  • McGrew LL, Richter JD (1990) Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/ MPF. EMBO J 9: 3743–3751

    PubMed  CAS  Google Scholar 

  • Mescher A, Humphreys T (1974) Activation of maternal mRNA in the absence of poly(A) formation in fertilised sea urchin eggs. Nature 249: 138–139

    PubMed  CAS  Google Scholar 

  • Munroe D, Jacobson A (1990a) mRNA Poly(A) tail, a 3’ enhancer of translational initiation. Mol Cell Biol 10:3441–3455

    Google Scholar 

  • Munroe D, Jacobson A (1990b) Tales of poly(A): a review. Gene 91: 151–158

    CAS  Google Scholar 

  • Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339: 275–280

    PubMed  CAS  Google Scholar 

  • Murray MT, Krohne G, Franke WW (1991) Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos. J Cell Biol 112: 1–11

    PubMed  CAS  Google Scholar 

  • Musci TJ, Amaya E, Kirschner MW (1990) Regulation of fibroblast growth factor receptor in early Xenopus embryos. Proc Natl Acad Sci USA 87: 8365–8369

    PubMed  CAS  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 673–686

    Google Scholar 

  • O’Keefe SJ, Wolfes H, Kiessling AA, Cooper GM (1989) Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg. Proc Natl Acad Sci USA 86: 7038–7042

    PubMed  Google Scholar 

  • Osborne HB, Duval C, Ghoda L, Omilli F, Bassez T, Coffìno P (1991) Expression and post-transcriptional regulation of ornithine decarboxylase during early Xenopus development. Eur J Biochem 202: 575–581

    PubMed  CAS  Google Scholar 

  • Paris J, Philippe M (1990) Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development. Dev Biol 140: 221–224

    PubMed  CAS  Google Scholar 

  • Paris J, Richter JD (1990) Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes. Mol Cell Biol 10: 5634–5645

    PubMed  CAS  Google Scholar 

  • Paris J, Osborne HB, Couturier A, LeGuellec R, Philippe M (1988) Changes in the polyadenylation of specific stable RNAs during the early development of Xenopus laevis . Gene 72: 169–176

    PubMed  CAS  Google Scholar 

  • Paris J, LeGuellec R, Couturier A, LeGuellec K, Omilli F, Camonis J, MacNeil S, Philippe M (1991a) Cloning by differential screening of a Xenopus cDNA coding for a protein highly homologous to cdc2. Proc Natl Acad Sci USA 88: 1039–1043

    CAS  Google Scholar 

  • Paris J, Swenson K, Piwnica-Worms H, Richter JD (1991b) Maturation-specific polyadenylation: in vitro activation by p34cdc2 and phosphorylation of a 58-kDa CPE-binding protein. Genes Dev 5: 1697–1708

    CAS  Google Scholar 

  • Paynton BV, Bachvarova R (1994) Polyadenylation and deadenylation of maternal mRNAs during oocyte growth and maturation in the mouse. Mol Reprod Dev 37: 172–180

    PubMed  CAS  Google Scholar 

  • Paynton BV, Rempel R, Bachvarova R (1988) Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol 129: 304–314

    PubMed  CAS  Google Scholar 

  • Regier JC, Kafatos FC (1977) Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyl-tRNA. Dev Biol 57: 270–283

    PubMed  CAS  Google Scholar 

  • Richter JD (1995) Dynamics of poly(A) addition and removal during development. In: Mattews M, Sonenberg N, Hershey J (eds) Translational control. Cold Spring Harbour Press, New York, pp 481–503

    Google Scholar 

  • Richter JD, Smith LD (1981) Differential capacity for translation and lack of competion between mRNAs which segregate to free and membrane-bound polysomes. Cell 27: 183–192

    PubMed  CAS  Google Scholar 

  • Richter JD, Smith LD (1984) Reversible inhibition of translation by Xenopus oocyte specific proteins. Nature 309: 378–380

    PubMed  CAS  Google Scholar 

  • Robbie EP, Peterson M, Amaya E, Musei TJ (1995) Temporal regulation of the Xenopus FGF-receptor in development: a translation inhibitory element in the 3´untranslated region. Development 121: 1775–1785

    PubMed  CAS  Google Scholar 

  • Rongo C, Gavis ER, Lehmann R (1995) Localization of oskar RNA regulates oskar translation and requires oskar protein. Development 121: 2737–2746

    PubMed  CAS  Google Scholar 

  • Rosenthal E (1993) Sequence analysis of translationally controlled maternal mRNAs from Urechis caupo . Dev Genet 14: 485–491

    PubMed  CAS  Google Scholar 

  • Rosenthal E, Wilt F (1987) Selective messenger RNA translation in marine invertebrate oocytes, eggs and zygotes. In: Ilan J(ed) Translational regulation of gene expression. Plenum Press, New York, pp 87–110

    Google Scholar 

  • Rosenthal ET, Hunt T, Ruderman JV (1980) Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam Spisula solidissima . Cell 20: 487–496

    PubMed  CAS  Google Scholar 

  • Rosenthal ET, Tansey T, Ruderman JV (1983) Sequence-specific adenylation and deadenylation accompany changes in the translation of maternal messenger RNA after fertilisation in Spisula oocytes. J Mol Biol 166: 309–327

    PubMed  CAS  Google Scholar 

  • Ruiz i Altalba A, Perry-O’Keefe H, Melton DA (1987) Xfin: an embryonic gene encoding a multifingered protein in Xenopus . EMBO J 6: 3065–3070

    Google Scholar 

  • Sachs AB, Davis RW (1989) The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58: 857–867

    PubMed  CAS  Google Scholar 

  • Sachs AB, Deardorff JA (1992) Translation initiation requires the PAB-dependent poly(A) ribo-nuclease in Yeast. Cell 70: 961–973

    PubMed  CAS  Google Scholar 

  • Sagata N, Shiokawa K, Yamana K (1980) A study on the steady-state population of poly(A)+ RNA during early development of Xenopus laevis . Dev Biol 77: 431–448

    PubMed  CAS  Google Scholar 

  • Sagata N, Watanabe N, Vande Woude GF, Ikawa Y (1989) The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342: 512–518

    PubMed  CAS  Google Scholar 

  • Sallés FJ, Darrow AL, O’Connell ML, Strickland S (1992) Isolation of novel murine maternal mRNAs regulated by cytoplasmic polyadenylation. Genes Dev 6: 1202–1212

    PubMed  Google Scholar 

  • Salles FJ, Lieberfarb ME, Wreden C, Gergen JP, Strickland S (1994) Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science 266: 1996–1999

    PubMed  CAS  Google Scholar 

  • Schmerle BS, Kuhn R, Bosse F, Schafer U (1992) Cap-specific mRNA (nucleoside-02´-)-methyl- transferase and poly(A) polymerase stimulatory activities of vaccinia virus mediated by a single protein. Proc Natl Acad Sci USA 89: 2897–2901

    Google Scholar 

  • Schultz RM (1993) Regulation of zygotic gene activation in the mouse. Bioessays 15: 531–538

    PubMed  CAS  Google Scholar 

  • Sheets MD, Fox CA, Hunt T, Vande Woude G, Wickens M (1994) The 3´-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev 8: 926–938

    PubMed  CAS  Google Scholar 

  • Sheets MD, Wu M, Wickens M (1995) Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 374: 511–516

    PubMed  CAS  Google Scholar 

  • Simon R, Richter JD (1994) Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins. Mol Cell Biol 14: 7867–7875

    PubMed  CAS  Google Scholar 

  • Simon R, Tassan JP, Richter JD (1992) Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element. Genes Dev 6: 2580–2591

    PubMed  CAS  Google Scholar 

  • Sommerville J (1992) RNA-binding proteins: masking proteins revisited. Bioessays 14: 337–339

    PubMed  CAS  Google Scholar 

  • St Johnston D, Nüsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68: 201–219

    PubMed  CAS  Google Scholar 

  • Standart N (1992) Masking and unmasking of maternal mRNA. Semin Dev Biol 3: 367–379

    Google Scholar 

  • Standart NM, Bray SJ, George EL, Hunt T, Ruderman JV (1985) The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal mRNAs in clam and sea urchin eggs. J Cell Biol 100: 1968–1976

    PubMed  CAS  Google Scholar 

  • Standart N, Dale M, Stewart E, Hunt T (1990) Maternal mRNA from clam oocytes can be specifically unmasked in vitro by antisense RNA complementary to the 3´untranslated region. Genes Dev 4: 2157–2168

    PubMed  CAS  Google Scholar 

  • Stebbins-Boaz B, Richter JD (1994) Multiple sequence elements and a maternal mRNA product control cdk2 RNA polyadenylation and translation during early Xenopus development. Mol Cell Biol 14: 5870–5880

    PubMed  CAS  Google Scholar 

  • Stebbins-Boaz B, Hake LE, Richter JD (1996) CPEB controls the cytoplasmic polyadenylation of cyclin, Cdkz and c-mos mRNAs and is necessary for oocyte maturation in Xenopus . EMBO J 15: 2582–2592

    PubMed  CAS  Google Scholar 

  • Strickland S, Huarte J, Belin D, Vassalli A, Rickles RJ, Vassalli JD (1988) Antisense RNA directed against the 3´ noncoding region prevents dormant mRNA activation in mouse oocytes. Science 241: 681–684

    Google Scholar 

  • Swenson KI, Farrel KM, Ruderman JV (1986) The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell 47: 861–870

    PubMed  CAS  Google Scholar 

  • Tannahill D, Melton DA (1989) Localized synthesis of the Vgl protein during early Xenopus development. Development 106: 775–785

    PubMed  CAS  Google Scholar 

  • Tassan JP, Le Goff X, Le Guellec R, Philippe M (1993) C11 the Xenopus homologue of Saccharomyces cerevisae SUP45, which is encoded by a maternal RNA, is not essential for translational fidelity in egg extracts. Biochem Soc Trans (London) 21: 862–867

    CAS  Google Scholar 

  • Varnum SM, Wormington WM (1990) Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis -sequences: a default mechanism for translational control. Genes Dev 4: 2278–2286

    PubMed  CAS  Google Scholar 

  • Varnum SM, Hurney CA, Wormington WM (1992) Maturation-specific deadenylation in Xenopus oocytes requires nuclear and cytoplasmic factors. Dev Biol 153: 283–290

    PubMed  CAS  Google Scholar 

  • Vassalli JD, Huarte J, Belin D, Gubler P, Vassalli A, O’Connell ML, Parton LA, Rickles RJ, Strickland S (1989) Regulated polyadenylation controls mRNA translation during meiotic maturation of mouse oocytes. Genes Dev 3: 2163–2171

    PubMed  CAS  Google Scholar 

  • Wahle E, Keller W (1992) The Biochemistry of 3´-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61: 419–440

    PubMed  CAS  Google Scholar 

  • Watanabe N, Vande Woude GF, Ikawa Y, Sagata N (1989) Specific proteolysis of the c-mos protooncogene product by calpain on fertilization of Xenopus eggs. Nature 342: 505–511

    PubMed  CAS  Google Scholar 

  • Wilt FH (1973) Polyadenylation of maternal RNA of sea urchin eggs after fertilization. Proc Natl Acad Sci USA 70: 2345–2349

    PubMed  CAS  Google Scholar 

  • Woodland HR (1974) Changes in polysome content of developing Xenopus embryos. Dev Biol 40: 90–101

    PubMed  CAS  Google Scholar 

  • Wormington M, Searfoss AM, Hurney CA (1996) Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation. EMBO J 15: 900–909

    PubMed  CAS  Google Scholar 

  • Yisraeli JK, Sokol S, Meltron DA (1990) A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vgl mRNA. Development 108: 289–298

    PubMed  CAS  Google Scholar 

  • Younglai EV, Godeau F, Mester J, Baulieu FE (1980) Increased ornithine decarboxylase activity during meiotic maturation in Xenopus laevis oocytes. Biochem Biophys Res Commun 96: 1279–1281

    Google Scholar 

  • Zelus BD, Giebelhaus DH, Eib DW, Kenner KA, Moon RT (1989) Expression of the poly(A) binding protein during development of Xenopus laevis . Mol Cell Biol 9: 2756–2760

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osborne, H.B., Richter, J.D. (1997). Translational Control by Polyadenylation During Early Development. In: Jeanteur, P. (eds) Cytoplasmic fate of messenger RNA. Progress in Molecular and Subcellular Biology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60471-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60471-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64420-7

  • Online ISBN: 978-3-642-60471-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics