Skip to main content

Interventional MR with a Hybrid High-Field System

  • Chapter
Interventional Magnetic Resonance Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Magnetic resonance (MR) imaging provides high soft tissue contrast and easy visualization of vessels at the same time. In addition, image contrast can be manipulated, depending on the sequence used. Its oblique, multiplanar, three-dimensional imaging capabilities greatly enhance accuracy and aid visualization of complex anatomy. MR can provide functional information as well and can be used for perfusion studies and qualitative and quantitative flow studies. Subsecond imaging is possible, although with low resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackerman JL, Offut MC, Buxton RB, Brady TJ (1986) Rapid 3D tracking of small RF coils. In: Book of abstracts, 5th Annual Meeting of Society of Magnetic Resonance in Medicine, 19–22 Aug 1986, Montreal. Society of Magnetic Resonance in Medicine, Berkeley, p 1131

    Google Scholar 

  • Adam G, Neuerburg J, Bücker A, et al (1997) Interventional MR: first clinical experience on a 1.5 T MR system combined with C-arm fluoroscopy. Invest Radiol 32:191–197

    Article  PubMed  CAS  Google Scholar 

  • Bahn MM, Oser AB, Cross DT (1996) CT and MRI of stroke. J Magn Reson Imag 6:833–845

    Article  CAS  Google Scholar 

  • Bakker CJG, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WPTM (1996) Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med 36:816–820

    Article  PubMed  CAS  Google Scholar 

  • Bakker CJG, Hoogeveen RM, Hurtak WF, van Vaals JJ, Viergever MA, Mali WPTM (1997) MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. Radiology 202:273–276

    PubMed  CAS  Google Scholar 

  • Barnwell SL (1997) Thrombolytic therapy for acute stroke: indications, technique, and results. In: Proceedings, SCVIR 22nd Annual Scientific Meeting, Washington DC, 8–13 March, J Vase Intervent Radiol 8 [Suppl]:28–32

    Google Scholar 

  • Bieze J (1993) Radiation exposure risks haunt interventionalists. Diagn Imag 8:68–79

    Google Scholar 

  • Bieze J (1994) Image guidance lowers costs, risks of surgery. Diagn Imag 4:53–61

    Google Scholar 

  • Camarate PJ, Heros RC, Latchaw RE (1994) “Brain attack”: the rationale for treating stroke as a medical emergency Neurosurgery 34:144–158

    Article  Google Scholar 

  • Capasso P, Trotteur G, Flandroy P, Dondelinger RF (1996) A combined CT and angiography suite with a pivoting table. Radiology 199:561–563

    PubMed  CAS  Google Scholar 

  • Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16:956–965

    Article  PubMed  CAS  Google Scholar 

  • Damascelli B, Marchiano A, Spreafico C, et al (1992) CT and fluoroscopy: toward a dual unit. J Intervent Radiol 7:91–96

    Google Scholar 

  • Delannoy J, Chen C, Turner R, et al (1991) Noninvasive temperature imaging using diffusion MRI. Magn Reson Med 19:333–339

    Article  PubMed  CAS  Google Scholar 

  • de Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34:359–367

    Article  PubMed  Google Scholar 

  • de Zwart J, van Gelderen P, Kelly DJ, Moonen CTW (1996) Fast magnetic-resonance temperature imaging. J Magn Reson 112:86–90

    Article  Google Scholar 

  • Duckwiler G, Lufkin RB, Teresi L, et al (1989) Head and neck lesions: MR-guided aspiration biopsy. Radiology 170:519–522

    PubMed  CAS  Google Scholar 

  • Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415

    Article  PubMed  CAS  Google Scholar 

  • Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263

    PubMed  CAS  Google Scholar 

  • Feinberg DA, Hoenninger LE, Kaufman CL, Watts JC, Arakawa M (1985) Inner volume MR imaging: technical concepts and their application. Radiology 156:743–747

    PubMed  CAS  Google Scholar 

  • Frenzel T, Roth K, Koßler S, Radüchel B, Bauer H, Platzek J, Weinmann H-J (1996) Noninvasive temperature measurement in vivo using a temperature-sensitive lanthanide complex and lH magnetic resonance spectroscopy. Magn Reson Med 35:364–369

    Article  PubMed  CAS  Google Scholar 

  • Glowinski A, Adam G, Bücker A, Neuerburg J, van Vaals JJ, Günther RW (1996) Catheter visualization for interventional MR by actively controlled locally induced field inhomogeneities. In: Proceedings of 4th Meeting of International Society of Magnetic Resonance in Medicine, 27 April — 3 May 1996, New York. Society of Magnetic Resonance in Medicine, Berkeley, p 51

    Google Scholar 

  • Glowinski A, Adam G, Bücker A, Neuerburg J, van Vaals JJ, Günther RW (1997) Catheter visualization using locally induced, actively controlled field inhomogeneities. Magn Reson Med 38 (in press)

    Google Scholar 

  • Hathout G, Lufkin R, Jabour B, Andrews J, Castro D (1992) MR-guided aspiration cytology in the head and neck at high field strength. J Magn Reson Imaging 2:93–94

    Article  PubMed  CAS  Google Scholar 

  • Higashida RT, Tsai FY, Halbach VV, Barnwell SL, Dowd CF, Hieshima GB (1995) Interventional neurovascular techniques in the treatment of stroke: state-of-the-art therapy. J Intern Med 237:105–115

    Article  PubMed  CAS  Google Scholar 

  • Hill CR, ter Haar GR (1995) High intensity focused ultrasound — potential for cancer treatment. Br J Radiol 68:1296–1301

    Article  PubMed  CAS  Google Scholar 

  • Hindman JC (1996) Proton resonance shift of water in the gas and liquid states. J Chem Phys 44:4582–4592

    Article  Google Scholar 

  • Hynynen K, Darkazanli A, Unger E, Schenck JF (1993) MRI-guided noninvasive ultrasound surgery. Med Phys 20:107–115

    Article  PubMed  CAS  Google Scholar 

  • Ishihara Y, Calderon A, Watanabe H, et al (1992) A precise and fast temperature mapping method using water proton chemical shift. In: Proceedings of 11th Meeting of Society of Magnetic Resonance in Medicine, 8–14 Aug, 1992, Berlin. Society of Magnetic Resonance in Medicine, Berkeley, p 4803

    Google Scholar 

  • Ishihara y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823

    Article  PubMed  CAS  Google Scholar 

  • Jolesz FA (1996) Image-guided procedures and the operating room of the future. Radiology 201(P):23

    Google Scholar 

  • Jolesz FA, Jakab PD (1991) Acoustic pressure wave generation within an MR imaging system: potential medical applications. J Magn Reson Imaging 1:609–613

    Article  PubMed  CAS  Google Scholar 

  • Jolesz FA, Bleier AR, Jakab PD, Ruenzel PW, Huttl K, Jako GJ (1988) MR imaging of laser-tissue interactions. Radiology 168:249–253

    PubMed  CAS  Google Scholar 

  • Köchli VD, McKinnon GC, Hofmann E, von Schulthess GK (1994) Vascular interventions guided by ultrafast MR imaging: evaluation of different materials. Magn Reson Med 31:309–314

    Article  PubMed  Google Scholar 

  • Kouwenhoven M (1997) Contrast-enhanced MR angiography, methods, limitations and possibilities. Acta Radiol Suppl (Stockh) 412:57–67

    CAS  Google Scholar 

  • Kuroda K, Suzuki Y, Ishihara Y, Okamoto K, Suzuki Y (1996) Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn Reson Med 35:20–29

    Article  PubMed  CAS  Google Scholar 

  • Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36:646–651

    Article  PubMed  CAS  Google Scholar 

  • Langsaeter L, Hill DLG, Keevil SF, Summers PE, Zhao J (1997) Tracking of an MR-compatible microendoscope for interventional MRI of the paranasal sinuses. In: Proceedings of 5th Meeting of International Society of Magnetic Resonance in Medicine, 14–18 April, 1997, Vancouver. Society of Magnetic Resonance in Medicine, Berkeley, p 1929

    Google Scholar 

  • LeBihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application of hyperthermia. Radiology 171:853–857

    CAS  Google Scholar 

  • Leung DA, Debatin JF, Wildermuth S, et al (1995) Real-time biplanar needle tracking for interventional MR imaging procedures. Radiology 197:485–488

    PubMed  CAS  Google Scholar 

  • Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. Am J Roentgenol 166:1337–1345

    CAS  Google Scholar 

  • Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artifacts in NMR imaging. Magn Reson Imaging 3:329–343

    Article  PubMed  Google Scholar 

  • Lufkin RB (1995) Interventional MR imaging. Radiology 197:16–18

    PubMed  CAS  Google Scholar 

  • Lufkin R, Teresi L, Hanafee W (1987) New needle for MR-guided aspiration cytology of the head and neck. Am J Roentgenol 149:380–382

    CAS  Google Scholar 

  • Lufkin R, Teresi L, Chiu L, Hanafee W (1988) A technique for MR-guided needle placement. Am J Roentgenol 151:193–196

    CAS  Google Scholar 

  • Martin AJ, Plewes DB, Henkelman RM (1992) MR imaging of blood vessels with an intravascular coil. J Magn Reson Imaging 2:421–429

    Article  PubMed  CAS  Google Scholar 

  • Martin AJ, McLoughlin RF, Barberi EA, Rutt BK (1996) An expandable intravenous RF coil for imaging the artery wall. In: Proceedings of 4th Meeting of International Society of Magnetic Resonance in Medicine, 27 April — 3 May, 1996, New York. Society of Magnetic Resonance in Medicine, Berkeley, p 402

    Google Scholar 

  • Matchar DB, Duncan PW (1994) Cost of stroke. In: Grotta JC (ed) Stroke: clinical updates, vol 5(3). National Stroke Association, Englewood, Colo, pp 9–12

    Google Scholar 

  • McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37:148–152

    Article  PubMed  CAS  Google Scholar 

  • Moonen CTW, Liu G, van Gelderen P, Sobering G (1992) A fast gradient-recalled MRI technique with increased sensitivity to dynamic susceptibility effects. Magn Reson Med 26:184–189

    Article  PubMed  CAS  Google Scholar 

  • Moonen CTW, Madio D, Olsen A, DesPres D, van Gelderen P, Fawcett T, Holbrook N (1997) On the feasibility of MRI guided focused ultrasound for local induction of gene expression. In: Proceedings of 5th Meeting of International Society of Magnetic Resonance in Medicine, 14–18 April 1997, Vancouver. Society of Magnetic Resonance in Medicine, Berkeley, p 526

    Google Scholar 

  • Mueller PR, Stark DD, Simeone JF, et al (1986) MR-guided aspiration biopsy: needle design and clinical trials. Radiology 161:605–609

    PubMed  CAS  Google Scholar 

  • Ocali O, Atalar E (1997) Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 37:112–118

    Article  PubMed  CAS  Google Scholar 

  • Oshinski JN, Hofland L, Mukundan S Jr, Dixon WT, Parks WJ, Pettigrew RI (1996) Two-dimensional coronary MR angiography without breath holding. Radiology 201:737–743

    PubMed  CAS  Google Scholar 

  • Parker DL, Smith V, Sheldon P, Crooks LE, Fussel L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10:321–325

    Article  PubMed  CAS  Google Scholar 

  • Pease GR, Wong STS, Roos MS, Rubinsky B (1995) MR image-guided control of cryosurgery. J Magn Reson Med 5:753–760

    CAS  Google Scholar 

  • Prince MR, Yucel EK, Kaufman JA, Harrison D, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881

    Article  PubMed  CAS  Google Scholar 

  • Prince MR, Grist TM, Debatin JF (1997) 3D contrast MR angiography. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rasche V, de Boer RW, Holz D, Proksa R (1995) Continuous radial data acquisition for dynamic MRI. Magn Reson Med 34:754–761

    Article  PubMed  CAS  Google Scholar 

  • Rasche V, Holz D, Köhler J, Proksa R, Röschmann P (1997) Catheter tracking using continuous radial MRI. Magn Reson Med 37:963–968

    Article  PubMed  CAS  Google Scholar 

  • Riederer SJ, Tasciyan T, Farzaneh F, et al (1988) MR fluoroscopy: technical feasibility. Magn Reson Imaging 8:1–15

    CAS  Google Scholar 

  • Rubin GD, Beaulieu CF, Argiro V, et al (1996) Perspective volume rendering of CT and MR images: applications for endoscopic imaging. Radiology 199:321–330

    PubMed  CAS  Google Scholar 

  • Rubinsky B, Gilbert JC, Onik GM, Roos MS, Wong STS, Brennan KM (1993) Monitoring cryosurgery in the brain and in the prostate with proton NMR. Cryobiology 30:191–199

    Article  PubMed  CAS  Google Scholar 

  • Shellock FG, Shellock VJ (1996) Ceramic surgical instruments: ex vivo evaluation of compatibility with MR imaging at 1.5 T. J Magn Reson Imaging 6:954–956

    Article  PubMed  CAS  Google Scholar 

  • Silverman SG, Collick BD, Figueira MR, et al (1995) Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology 197:175–181

    PubMed  CAS  Google Scholar 

  • Souza SP (1992) Uncertainties in temperature mapping via diffusion imaging. In: Proceedings of 11th Meeting of Society of Magnetic Resonance in Medicine, 8–14 August, 1992, Berlin. Society of Magnetic Resonance in Medicine, Berkeley, p 1214

    Google Scholar 

  • Stollberger R, Ebner F, Fan M, Ascher PW (1992) Temperaturmapping mittels MR-imaging am Beispiel der Laserkoagulation von Gehirngewebe. Biomed Tech (Berlin) 57:209–211

    Article  Google Scholar 

  • Stollberger R, Fan M, Ebner F, Ascher PW, Kleinert R (1993) Monitoring of temperature changes in heterogeneous tissues for the monitoring of hyperthermia. In: Proceedings of 12th Meeting of Society of Magnetic Resonance in Medicine, 14–20 August, 1993, New York. Society of Magnetic Resonance in Medicine, Berkeley, p 156

    Google Scholar 

  • Stollberger R, Huber D, Renhard W, Glanzer H (1997) Influence of the temperature dependent susceptibility on monitoring of interstitial tissue coagulation using the proton resonance frequency method. In: Proceedings of 5th Meeting of International Society of Magnetic Resonance in Medicine, 14–18 April, 1997, Vancouver. Society of Magnetic Resonance in Medicine, Berkeley, p 1963

    Google Scholar 

  • Tanaka H, Eno K, Kato H, Ishida T (1981) Possible application of noninvasive thermometry for hyperthermia using NMR. Nippon Acta Radiol 41:897–899

    PubMed  CAS  Google Scholar 

  • van Vaals JJ, van Yperen GH, Hoogenboom TLM, Duijvestijn MJ (1994) Local Look (LoLo): zoom-fluoroscopy of a moving target. In: Proceedings of 1st Meeting of Society of Magnetic Resonance, 5–9 March 1994, Dallas. J Magn Reson Imaging 4(P):38

    Google Scholar 

  • Vitkin IA, Moriarty JA, Peters RD, et al (1997) Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study. Med Phys 24:269–277

    Article  PubMed  CAS  Google Scholar 

  • Vogl TJ, Müller PK, Hammerstingl R, et al (1995) Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results. Radiology 196:257–265

    PubMed  CAS  Google Scholar 

  • Wagner LK, Eifel PJ, Geise RA (1994) Potential biological effects following high X-ray dose interventional procedures. J Vase Interv Radiol 5:71–84

    Article  CAS  Google Scholar 

  • Young IR, Hand JW, Oatridge A, Prior MV (1994) Modeling and observation of temperature changes in vivo using MRI. Magn Reson Med 32:358–369

    Article  PubMed  CAS  Google Scholar 

  • Young IR, Hajnal JV, Roberts IG, Ling JX, Hill-Cottingham RJ, Oatridge A, Wilson JA (1996) An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurements in human peripheral muscle. Magn Reson Med 36:366–374

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Vaals, J.J. (1998). Interventional MR with a Hybrid High-Field System. In: Debatin, J.F., Adam, G. (eds) Interventional Magnetic Resonance Imaging. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60272-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60272-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64329-3

  • Online ISBN: 978-3-642-60272-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics