Skip to main content

Mycorrhizae — the Friendly Fungi: What We Know, What Should We Know, and How Do We Know?

  • Chapter
Mycorrhiza Manual

Part of the book series: Springer Lab Manual ((SLM))

Abstract

Roots, the “hidden half” of plants, serve a multitude of functions. They are responsible for anchorage, supply the plants with water and with nutrients, and exchange various growth substances with the shoots. The root-soil interface is the site where most interactions between the plants and their environment occur. Roots constitute a major source of organic material for the soil and thus affect its structure, aeration, and biological activities. While organic chemicals move out of the roots into the soil, inorganic ones move in. Insufficient or excessive accumulation of most elements would damage plants, and therefore their uptake is controlled at the root surface (Wilcox 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agerer R (1987–1993) Color atlas of Ectomycorrhizae. Ist–7th delivery. Einhorn, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza. Springer Berlin Heidelberg New York, pp 685–734

    Google Scholar 

  • Allen MF (1991) The ecology of Mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF, Allen EB (1992) Mycorrhizae and plant community development: mechanisms and pattern. In: Carrol JC, Wick-Low DT (eds) The fungal community: its organization and role in the ecosystem. Dekker, New York, pp 455–479

    Google Scholar 

  • Allen MF, Figueroa C, Weinbaum BS, Barlow SB, Allen EB (1996) Differential production of oxalate by mycorrhizal fungi in arid ecosystem. Biol Fertil Soils 22:287–292

    Article  CAS  Google Scholar 

  • Ames RE, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled source by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Andrade G, Barea JM (1996) Germination and growth of Glomus clarum as influenced by maize (Zea mays L.) under aseptic conditions in minirhizotron. In: Azcon-Agullar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. European Commission Directorate-General XII Science, Research and Development, Brussels, pp 285–287

    Google Scholar 

  • Auge RM, Schekel KA, Wample RL (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to dought stress. Plant Soil 99:291–302

    Article  CAS  Google Scholar 

  • Azaizeh HA, Marschner H, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327

    Article  Google Scholar 

  • Bagyaraj DJ, Varma A (1995) Interaction between arbuscular mycorrhizal fungi and plants: their importance in sustainable agriculture in arid and semiarid tropics. Advances in microbial ecology. Plenum Press, New York, vol 14, pp 119–142

    Google Scholar 

  • Balaji B, Ba AM, La Rue, Tepper D, Piche Y (1994) Pisum sativum mutants insensitive to nodulation are also insensitive to colonization in vitro by the mycorrhizal fungus Gigaspora margirata. Plant Sci 102:195–203

    Article  Google Scholar 

  • Balaji B, Poulin JM, Vierhelig H, Piche Y (1995) Responses of an arbuscular mycorrhizal fungus, Gigaspora margarita, to exudates and volatiles from the Ri T-DNA-transformed roots of nonmycorrhizal and mycorrhizal mutants of Pisum sativum L. Sparkle. Exp Mycol 19:275–283

    Article  CAS  Google Scholar 

  • Barea JM, Jeffries P (1995) Arbuscular mycorhizas in sustainable soil-plant systems. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 521–560

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bécard G, Piche Y (1992) Establishment of VA mycorrhizae in root organ culture. Review and proposed methodology. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 89–108

    Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. Am Soc Agron Spec Publ 54

    Google Scholar 

  • Bethlenfalvay GJ, Pacovsky RS Bayne HG, Stafford HG (1982) Interactions between nitrogen fixation, mycorrhizal colonization and host plant growth in the Phaseolus-Rhizobium-Glomus symbiosis. Plant Physiol 70:446–450

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Bonfante P (1992) Quantification of the nuclear DNA content of two arbuscular mycorhizal fungi. Mycol Res 96:1071–1076

    Article  Google Scholar 

  • Bianciotto V, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular mycorrhizal fungi and plant growth promoting soil bacteria. In: Azcon-Aguillar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. European Commission Directirate-General XII Science, Research and Development, Brussels, pp 623–627

    Google Scholar 

  • Biermann B, Linderman RG (1983) Increased geranium growth using pretransplant inoculation with mycorrhizal fungus. J Am Hortic Soc 108:972–976

    Google Scholar 

  • Cervantes E, Rodriguez-Barrueco C (1992) Relationships between the mycorrhizal and actinorhizal symbiosis in non-legumes. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 417–432

    Chapter  Google Scholar 

  • Charest C, Dalpe Y, Brown A (1993) The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of maize. Mycorrhiza 4:89–92

    Article  Google Scholar 

  • Chavez MC, Ferrara-Cerato R (1990) Effect of vesicular-arbuscular mycorrhizae on tissue-cultured plantlets of strawberry. Hortic Sci 25:903–905

    Google Scholar 

  • Cwyndar T (1992) Fewer fungi bode poorly for forests. Mo Conserv 53:28

    Google Scholar 

  • Dalpe Y (1994) Endomycorrhizas à arbuscules; colonisation en chambre de croissance du Triticum aesivum L. et de I’Allium porrum L. Can J Plant Pathol 16:230

    Article  Google Scholar 

  • Davis FT, Potter JR Jr, Lindermann RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration response in gas exchange and water relations. Plant Physiol 87:45–53

    Article  Google Scholar 

  • Dehne HW (1982) Interaction between VAM fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • DeMars BG, Boerner REJ (1994) Vesicular-arbuscular mycorrhizal fungi colonization in Capsella bursa-pastoris (Brassicaceae). Am Midl Nat 132:377–380

    Article  Google Scholar 

  • DeMars BG, Boerner REJ (1995) Arbuscular mycorrhizal development in three crucifers. Mycorrhiza 5:405–408

    Google Scholar 

  • Diop TA, Bécard G, Piche Y (1992) Long-term in vitro culture of an endomycorrhizal fungus, Gigaspora margarita, on Ri T-DNA transformed roots of carrot. Symbiosis 12:249–259

    Google Scholar 

  • Elmeskaoui A, Damont J, Poulin M, Piche Y, Desjardins Y (1996) A tri-partite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5:313–319

    Article  Google Scholar 

  • Espinoza-Victoria D, Quintero-Ramos M, Ferrera-Cerrato R, Bethlenfalvay GJ (1993) Fitting plants to soil through mycorrhizal fungi: plant nutrition in host-endophyte combinations evaluated by the diagnosis and recommendation integrated system. Biol Fertil Soils 15:96–102

    Article  CAS  Google Scholar 

  • Franken P, Gianinazzi-Pearson V (1996) Construction of genomic phage libraries of the arbuscular mycorrhizal fungi Glomus mosseae and Scutellospora castanea and isolation of ribosomal RNA genes. Mycorrhiza 6:167–174

    Article  CAS  Google Scholar 

  • Gardner IC, Barrueco CR (1995) Mycorrhizal and Actinorhizal Biotechnology-Problems and Prospects. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 469–495

    Google Scholar 

  • Gerdemann JW (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Article  Google Scholar 

  • Gianinazzi S, Trouvelot A, Lavoto P, Gianinazzi-Pearson V, Franken P (1995) Arbuscular mycorrhizal fungi in plant production of temperate agroecosystems. Crit Rev in Biotechnol 15:305–312

    Article  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Tisserant B, Lemoine MC (1992) Protein activities as potential markers of functional endomycorrhizas in plants. In: Read DJ, Lewis DH, Fitter AH, Alexandr IJ (eds) Mycorrhizas in ecosystems. CAB International, Oxon, pp 333–339

    Google Scholar 

  • Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715

    Article  Google Scholar 

  • Giovannetti M, Lioi L (1990) Variation of electrophoretic patterns in proteins of VAM fungi chlamydospores. In: Reisinger A, Bresinsky A (eds) Proc 4th Int Mycological Congr, Regensburg, 323 pp

    Google Scholar 

  • Göbel C, Hahn A, Hock B (1995) Production of polyclonal monolonal antibodies against hyphae from arbuscular mycorrhizal fungi. Crit Rev in Biotechnol 15:293–304

    Article  Google Scholar 

  • Gould AB, Hendrix JW, Ferriss RS (1995) Relationship of mycorrhizal activity to time following reclamation of surface mine land in western Kentucky. I. Propagule and spore population densities. Can J Bot 74:247–261

    Article  Google Scholar 

  • Hahn A, Bonfante P, Horn K, Pausch F, Hock B (1993) Production of monoclonal antibodies against surface antigens of spores from arbuscular mycorrhizal fungi by improved immunization and screening procedure. Mycorrhiza 4:69–78

    Article  CAS  Google Scholar 

  • Hahn A, Horn K, Hock B (1995) Serological properties of mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 181–204

    Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105 (Suppl):1–102

    Article  Google Scholar 

  • Harnikumar KM, Bagyaraj DJ (1996) Persistence of introduced Glomus intraradices in the field as influenced by repeated inoculation and cropping system. Biol Fertil Soils 21:184–188

    Article  Google Scholar 

  • Hashem AR (1995) The role of mycorrhizal infection in the resistance of Vaccinium macrocarpon to manganese. Mycorrhiza 5:289–292

    Google Scholar 

  • Hepper CM (1984) Isolation and culture of VA mycorrhizal (VAM) fungi. In: Powell CL, Bagyaraj DJ (eds) VA Mycorrhiza. CRC Press, Boca Raton, pp 95–112

    Google Scholar 

  • Hussey RS, Roncadori RW (1982) Vesicular arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Dis 66:9

    Article  Google Scholar 

  • Jabaji-Hare SH, Piche Y, Fortin JA (1986) Isolation and structural characterization of soil-borne auxiliary cells of Gigaspora margarita Becker & Hall, a vesicular-arbuscular mycorrhizal fungus. New Phytol 105:769–784

    Google Scholar 

  • Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant-soil system. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 101–115

    Chapter  Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1996) Effects of protozoa on mycorrhizal and non-mycorrhizal spruce seedlings. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. European Commission Directiorate-General XII Science, Research and Development, Brussels, pp 642–645

    Google Scholar 

  • Koide R (1985) The effect of VAM infection and phosphorus status on sunflower hydraulic and stomatal properties. J Exp Bot 36:1087–1098

    Article  Google Scholar 

  • Koske RE (1975) Endogone spores in Australian sand dunes. Can J Bot 53:668–672

    Article  Google Scholar 

  • Kothari SK, Marschner H, George E (1990) Effects of VA mycorrhizal fungi and microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311

    Article  Google Scholar 

  • Lanfranco L, Wyss P, Marzachi C, Bonfante P (1995) Generation of RAPD-PCR primers for the identification of isolates of Glomus mosseae, an arbuscular mycorrhizal fungus. Mol Ecol 4:61–68

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Wetzstein HY (1988) Quantum flux density effects on the anatomy and surface morphology of in-vitro-and in-vivo-developed sweetgum leaves. J Am Soc Hortic Sci 113:167–171

    Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae: plant health. APS Press, St Paul, MN, pp 1–25

    Google Scholar 

  • Liu RJ (1995) Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza 5: 293–297

    Google Scholar 

  • Lovato PE, Schuepp H, Trouvelot A, Gianinazzi S (1995) Application of arbuscular mycorrhizal fungi (AMF) in orchid and ornamental plants. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 443–468

    Google Scholar 

  • MacDonald RM, Chandler MR (1981) Bacterium-Like Organelles in the vesicular-arbuscular mycorrhizal fungus Glomus caledonius. New Phytol 89:241–246

    Article  Google Scholar 

  • Malajezuk M (1979) The microflora of unsuberized roots of Eucalyptus calophylla R. Br. and Eucalyptus margarita Donn ex Sm. seedlings grown in soils suppressive and conducive to Phytophthora cinnamomi Rands. II Mycorrhizal roots and associated microflora. Aust J Bot 27:255–272

    Article  Google Scholar 

  • Mathew J, Shankar A, Neeraj, Varma AK (1991) Glomaceous fungi associated with spineless cacti, a fodder supplement in deserts. Trans Mycol Soc Jpn 32:225–233

    Google Scholar 

  • Morton JB (1996) Redescription oí Glomus caledonium based on correspondence of some spore morphological characters in type specimens and a living reference culture. Mycorrhiza 6:161–166

    Article  Google Scholar 

  • Morton JB, Franke M, Bentivenga SP (1995) Developmental foundations for morphological diversity among endomycorrhizal fungi Glomales. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 669–684

    Google Scholar 

  • Mulongoy K, Gianinazzi S, Roger PA, Dommergues Y (1992) Biofertilizers: agronomic and environmental impacts and economics. In: daSilva EJ, Rutledge C, Sasson A (eds) Biotechnology: economic and social aspects: issues for the developing countries. UNESCO, Cambridge University Press, Cambridge, pp 55–69

    Chapter  Google Scholar 

  • Neeraj, Shankar A, Mathew J, Varma AK (1991) Occurrence of VA mycorrhizae within the Indian semi-arid soils. Biol Fertil Soils 11:140–144

    Article  Google Scholar 

  • Nelson CE (1987) The water relations of vesicular-arbuscular mycorrhizal system. In: Saif GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 71–91

    Google Scholar 

  • Newman EL, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Nicolson TH (1959) Mycorrhizae in Gramineae. I Vesicular-arbuscular endophytes with special reference to the external phase. Trans Br Mycol Soc 42:421–438

    Article  Google Scholar 

  • Nicolson TH (1960) Mycorrhizae in gramineae. II Develoment in different habitats, particularly sand dunes. Trans Br Mycol Soc 43:132–145

    Article  Google Scholar 

  • Perotto S, Malavasi F, Butcher GW (1992) Use of monoclonal antibodies to study mycor-rhiza: Present application and perspectives. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, New York, pp 221–248

    Chapter  Google Scholar 

  • Peterson RL, Farquha ML (1994) Mycorrhizas-integrated development between roots and fungi. Mycologia 86:311–326

    Article  Google Scholar 

  • Pfleger FL, Linderman RG (1994) Mycorrhiza and plant health APS Press St Paul, MN

    Google Scholar 

  • Pierik RLM (1987) Handicaps for the large-scale commercial application of micro-propagation. Acta Hortic 226:63–71

    Google Scholar 

  • Pierik RLM (1988) In vitro culture of higher plants as a tool in propagation of horticultural crops. Acta Hortic 230:25–40

    Google Scholar 

  • Ponton F, Piche Y, Parent S, Caron M (1990) The use of vesicular-arbuscular mycorrhiza in Boston fern production. I. Effect of peat-based mixes. Hortic Sci 25:183–189

    Google Scholar 

  • Puppi G, Azcon R, Höflich G (1984) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 201–215

    Google Scholar 

  • Quintero-Ramos M, Espinoza-Victoria D, Ferrera-Cerrato R, Bethlenfalvay GJ (1993) Fitting plants to soil through mycorrhizal fungi: mycorrhiza effects on plant growth and soil organic matter. Biol Fert Soils 15:103–106

    Article  Google Scholar 

  • Read DJ (1990) Mycorrhizas in ecosystems-Nature’s response to the “Law of the Minimum”. In: Haksworth DL (ed) Frontiers in mycology. CAB International, Wallingford, pp 101–130

    Google Scholar 

  • Rosendahl S, Sen R (1992) Isozyme analysis of mycorrhizal fungi and their mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in mycorrhiza. Academic Press, New York, pp 169–192

    Google Scholar 

  • Rovira AD, Bowen GD, Foster RC (1983) The significance of rhizosphere microflora and mycorrhiza in plant nutrition. In: Läudili A, Bieleski RL (eds) Encyclopedia of plant physiology, New Series, vol 15A Mineral plant nutrition. Springer, Berlin, Heidelberg, New York, pp 61–68

    Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    PubMed  CAS  Google Scholar 

  • Sanchez-Diaz M, Honrubia M (1994) Water relations and alleviation of drought stress in mycorrhizal plants. In: Gianinazzi S, Schiiepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 167–178

    Chapter  Google Scholar 

  • Sanders IR, Ravolanirina F, Gianinazzi-Pearson V, Gianinazzi S, Lemoine MC (1992) Detection of specific antigens in the vesicular-arbuscular mycorrhizal fungi Gigaspora and Acaulospora laevis using polyclonal antibodies to soluble spore fractions. Mycol Res 96:477–480

    Article  Google Scholar 

  • Scannerini S, Bonfante P, Fontana A (1975) An ultrastructural model for the host-symbiont interaction in the endotrophic mycorrhizae of Ornithogalum umbellatum L. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, New York, pp 314–324

    Google Scholar 

  • Schmid E, Oberwinkler F (1993) Mycorrhiza-like interaction between the achlorophyllous gametophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron microcopy. New Phytol 124:69–81

    Article  Google Scholar 

  • Shafer RS, Schoeneberger MM (1994) Air pollution and ecosystem health: the mycorrhizal connection. In: Pfleger FL, Linderman RG (eds) Mycorrhiza and plant health. APS Press, St Paul, MN, pp 153–187

    Google Scholar 

  • Shankar A, Varma A (1993) Isozyme analysis in VAM spores, help in taxonomic consideration. Curr Sci 65:165–168

    CAS  Google Scholar 

  • Shubert A, Bodrino C, Gribaudo I (1992) Vesicular-abuscular mycorrhizal inoculation of kiwi fruit (Actinida deliciosa) micropropagated strawberry plants. Agronomie 12:847–850

    Article  Google Scholar 

  • Siguenza C, Espejel I, Allen EB (1996) Seasonability of mycorrhiza in coastal sand dunes of Baja California. Mycorrhiza 6:151–157

    Article  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Strullu DG (1985) Les mycorhizes. Handbuch der Pflanzen-anatomie. Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Sylvia DM (1989) Nursery inoculation of sea oats with vesicular-arbuscular mycorrhizal fungi and outplanting performnce on Florida beaches. J Coastal Res 5:747–754

    Google Scholar 

  • Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729–743

    Article  Google Scholar 

  • Tommerup IC (1992) The role of mycorrhiza in plant populations and communities-hypha-hypha interactions of vesicular arbuscular mycorhizal fungi and the consequences of population biology. Mycorrhiza 1:123–126

    Article  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evalutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 5–25

    Google Scholar 

  • Unestam T (1991) Water repellency, mat formation, and leaf stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1:13–20

    Article  Google Scholar 

  • Unestam T, Sun Yu-Ping (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5:301–311

    Article  Google Scholar 

  • Varma A (1995a) Ecophysiology and application of arbuscular mycorhizal fungi in arid soils. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 561–592

    Google Scholar 

  • Varma A (1995b) Arbuscular mycorrhizal fungi: state-of-the art. Crit Rev in Biotechol 15:179–200

    Article  Google Scholar 

  • Varma A, Schuepp H (1994a) Infectivity and effectiveness of Glomus intraradices on micropragated plants. Mycorrhiza 5:29–38

    Article  Google Scholar 

  • Varma A, Schuepp H (1994b) Positive influence of arbuscular mycorrhizal fungus on in vitro-raised Hortensia plantlets. Angew Bot 68: 108–115

    Google Scholar 

  • Varma A, Schuepp H (1995) Mycorrhization of the commercially important micro-propagated plants. Crit Rev Biotechol 15:313–328

    Article  Google Scholar 

  • Varma A, Singh K, Lall VK (1981) Lumen bacteria from endomycorrhizal spores. Curr Microbiol 6:207–211

    Article  Google Scholar 

  • Verma S (1996) Plant endomycorrhizal fungal interactions: a biotechnological approach. PHD Thesis, Jawaharlal Nehru University, New Delhi (unpublished)

    Google Scholar 

  • Vestberg M (1992) Arbuscular mycorrhizal inoculation of micropropagated strawberry and field observations in Finland. Agronomie 12:865–867

    Article  Google Scholar 

  • Wang H, Parent S, Gosselin A, Desjardins Y (1993) Study of vesicular-arbuscular mycorrhizal peat based substrates on symbiosis establishment, acclimatization and growth of three micropropagated species. J Am Hortic Soc 118:896–901

    Google Scholar 

  • Wetzstein HY, Sommer HE (1982) Leaf anatomy of tissue-cultured Liuidambar styraciflua plantlets during acclimatization. J Am Soc Hortic Sci 108:475–480

    Google Scholar 

  • Wheeler CT, Miller IM (1990) Uses of actinorhizal plants in Europe. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, London, pp 365–390

    Google Scholar 

  • Wilcox HE (1991) Mycorrhizae. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots — the hidden half. Marcel Dekker, New York

    Google Scholar 

  • Williams SCK, Vestberg M, Uosukain M, Dodd JC, Jeffries P (1992) Effect of fertilizers and arbuscular mycorrhizal fungi on the post-vitro growth of micropropagated strawberry. Agronomie 12:851–857

    Article  Google Scholar 

  • Wilson JF, Hanton WK (1979) Bacteria-like structure in fungi. In: Lemke PE (ed) Viruses and plasmids in fungi. Series on mycology, vol 1. Marcel Dekker, New York, pp 525–537

    Google Scholar 

  • Wood T, Cummings B (1992) Biotechnology and the future of VAM commercialization. In: Allen MF (ed) Mycorrhizal functioning. Chapman & Hall, New York, pp 468–487

    Google Scholar 

  • Wright SF, Morton JB (1989) Detection of vesicular-arbuscular mycorrhizal fungus colonization of roots by using a dot-immunoblot assay. Appl Environ Microbiol 55:761–763

    PubMed  CAS  Google Scholar 

  • Zak B (1973) Characterization of ectomycorrhizas. In: Marks GC, Kozlowski TT (eds) Ectomycorhizas — their ecolgy and physiology. Academic Press, New York, pp 43–78

    Google Scholar 

  • Zeze A, Dulieu H, Gianinazzi-Pearson V (1994) DNA cloning and screening of a partial genomic library from an arbuscular mycorrhizal fungus, Scutellospora castanea. Mycorrhiza 4:251–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varma, A. (1998). Mycorrhizae — the Friendly Fungi: What We Know, What Should We Know, and How Do We Know?. In: Varma, A. (eds) Mycorrhiza Manual. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60268-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60268-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62437-0

  • Online ISBN: 978-3-642-60268-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics