Skip to main content

Types of pollen dispersal units and pollen competition

  • Chapter
Anther and Pollen

Abstract

The reproductive structures of algae are dispersed actively by means of flagella, or passively, by means of water currents. Likewise in the most primitive terrestrial plants, dispersal may be active or passive, but as well as water currents, air currents are also exploited (Faegri and van der Pijl 1979). Originally in gymnosperms, but now mainly in angiosperms, animals attracted to the reproductive structures by seduction or deception may be agents of dispersal (Dafiii 1984, Pacini 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brewbaker JL, Majamder SK (1961) Cultural studies on the pollen population effect and the self-incompatibility inhibition. Am J Bot 48: 457–464

    Article  CAS  Google Scholar 

  • Campbell DR (1988) Multiple paternity in fruits of Ipomopsis aggregata (Polemoniaceae). Am J Bot 85: 1022–1027

    Article  Google Scholar 

  • Chadefaud M, Emberger L (1960) Traité de Botanique (Systematique). Masson, Paris

    Google Scholar 

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indication of breeding systems in flowering plants. Evolution 31: 32–46

    Article  Google Scholar 

  • Cruden RW, Jensen KG (1979) Viscin threads, pollination efficiency and low pollen-ovule ratio. Am J Bot 66: 875–879

    Article  Google Scholar 

  • Dafni A (1984) Mimicry and deception in pollination. Ann Rev Ecol Syst 15: 259–278

    Article  Google Scholar 

  • De Frey HM, Coetzer LA, Robbertse PJ (1992) A unique anther-mucilage in the pollination biology of Tylosema esculentum. Sex Plant Reprod 5: 303

    Article  Google Scholar 

  • Ellstrand NC (1984) Multiple paternity within fruits of the wild radish, Raphanus sativus. Am Natural 123: 819–828

    Article  Google Scholar 

  • Faegri K, Pijl L van der (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London.

    Google Scholar 

  • Freeman CE, Head KC (1990) Temperature and sucrose composition of floral nectars in Ipomopsis longiflora under field conditions. Southwestern Natural 35: 423–426

    Article  Google Scholar 

  • Gold JJ, Shore JS (1995) Multiple paternity in Asclepias syriaca using paired-fruit analysis. Can J Bot 73: 1212–1216

    Article  Google Scholar 

  • Halbritter H, Hesse M, Buchner R (1997) Pollen-connnecting threads in Gymnocalycium (Cactaceae): their origin, function, and systematic relevance. Grana 36: 1–10

    Article  Google Scholar 

  • Herrero M, Arbeloa A (1989) Influence of the pistil on pollen tube kinetics in peach (Prunus persica). Am J Bot 76: 1441–1447

    Article  Google Scholar 

  • Herrero M, Hormanza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9: 343–347

    Article  Google Scholar 

  • Heslop-Harrison J, Knox RB, Heslop-Harrison Y, Mattsson O (1975) Pollen-wall proteins: emission and role in incompatibility responses. In: Ducker JC, Racey PA (eds) Biology of the male gamete. Academic Press, London, pp 188–202

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Heslop-Harrison JS (1997) Motility in ungerminated grass pollen: association of myosin with polysaccharide-containing wall-precursor bodies (P-particles). Sex Plant Reprod 10: 65–66

    Article  Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the Angiosperm stigma. Ann Bot 41: 1233–1258

    Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J, Reger BJ (1985) The pollen-stigma interaction in the grasses. 7. Pollen-tube guidance and the regulation of the tube number in Zea mays L.. Acta Bot Neerl 34: 193–211

    Google Scholar 

  • Hormaza JI, Herrero M (1996) Dynamics of pollen tube growth under different competition regimes. Sex Plant Reprod 9: 153–160

    Article  Google Scholar 

  • Kenrick J, Knox RB (1989) Pollen-pistil interactions in Leguminosae (Mimosoideae). In: Stirton CH, Zarucchi JL (eds) Advances in legume biology. Monogr Syst Bot Missouri Bot Gard 29: 127–156

    Google Scholar 

  • Levin MD, Waller GD (1989) The role of pollinating insects in future world food production. Apiacta 24: 18–21

    Google Scholar 

  • Lisci M, Tanda C, Pacini E (1994) Pollen ecophysiology of Mercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year round. Ann Bot 74: 125–135

    Article  Google Scholar 

  • Lisci M, Cardinali G, Pacini E (1996) Pollen dispersal and role of pollenkitt in Mercurialis annua L. (Euphorbiaceae). Flora 191: 385–391

    Google Scholar 

  • Muona O, Moran GF, Bell JC (1991) Hierarchical patterns of correlated mating in Acacia melanoxilon. Genetics 127: 619–626

    PubMed  CAS  Google Scholar 

  • Nepi M, Pacini E (1993) Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Ann Bot 72: 527–536

    Article  Google Scholar 

  • Nicholls MS, Cook DK (1986) The function of pollen tetrads in Typha (Typhaceae). Veröff Geobot Inst ETH 87: 112–119

    Google Scholar 

  • Niesenbaum RA, Schueller SK (1997) Effects of pollen competitive environment on pollen performance in Mirabilis jalapa (Nyctaginaceae). Sex Plant Reprod 10: 101–106

    Article  Google Scholar 

  • Ottaviano E, Mulcahy DL (1989) Genetics of angiosperm pollen. Adv Gen 26: 1–64

    Article  Google Scholar 

  • Pacini E (1992) Seduction and deception in pollen and seed dispersal. Giorn Bot Ital 126: 161–168

    Google Scholar 

  • Pacini E (1994) Cell biology of anthers and pollen development. In: Williams EG, Clarke AE, Knox RB (eds) Gamete control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic Publishers, Dordrecht, pp. 289–308

    Google Scholar 

  • Pacini E, Franchi GG (1996) Some cytological, ecological and evolutionary aspects of pollination. Acta Soc Bot Pol 65: 11–16

    Google Scholar 

  • Pacini E, Franchi GG (1998) Pollen dispersal units, gynoecium and pollination. In: SJ Owens, PJ Rudall (eds) Reproductive Biology. Royal Botanic Gardens, Kew, in press

    Google Scholar 

  • Pacini E, Franchi GG, Lisci M, Nepi M (1997) Pollen viability related to type of pollination in six angiosperm species. Ann Bot 80: 83–87

    Article  Google Scholar 

  • Pandolfi T, Pacini E (1995) The pollinium of Loroglossum hircinum (Orchidaceae) between pollination and pollen tube emission. Pl Syst Evol 196: 141–151

    Article  Google Scholar 

  • Pandolfi T, Pacini E, Calder DM (1993) Ontogenesis of monad pollen in Pterostylis plumosa (Orchidaceae, Neottioideae). Pl Syst Evol 186: 175–185

    Article  Google Scholar 

  • Proctor HC, Harder LD (1994) Pollen load, capsule weight, and seed production in three orchid species. Can J Bot 72: 249–255

    Article  Google Scholar 

  • Smith-Huberta NL (1997) Pollen tube attrition in Clarkia tembloriensis (Onagraceae). Int J Plant Sci 158: 519–524

    Article  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: Biology Biochemistry Management. Springer, Berlin

    Google Scholar 

  • Walker JW, Doyle JA (1975) The bases of angiosperm phylogeny: Palynology. Ann Miss Bot Gard 62: 664–723

    Article  Google Scholar 

  • Waser NM (1983) Competition for pollination and floral character differences among sympatric plant species: a review of evidence. In: Jones CE, Little RJ (eds) Handbook of Experimental Pollination Biology. Van Nostrand Theinhold, New York, pp. 277–293

    Google Scholar 

  • Wilson M (1979) Sexual selection in plants. Amer Natural 113: 777–790

    Article  Google Scholar 

  • Wyatt R, Broyles SB (1994) Ecology and evolution of reproduction in milkweeds. Ann Rev Ecol Syst 25: 423–441

    Article  Google Scholar 

  • Wyatt R, Broyles SB, Derda GS (1992) Environmental influences on nectar production in milkweeds (Asclepias syriaca and A. exaltatd). Am J Bot 79: 636–642

    Article  Google Scholar 

  • Winsor JA, Davis LE, Stephenson AG (1987) The relation between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. Amer Natural 129: 643–656

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pacini, E., Franchi, G.G. (1999). Types of pollen dispersal units and pollen competition. In: Clément, C., Pacini, E., Audran, JC. (eds) Anther and Pollen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59985-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59985-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64209-8

  • Online ISBN: 978-3-642-59985-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics