Skip to main content

Abstract

Many microbes are able to grow at pH values as low as 4, but the majority can also grow at neutral and slightly alkaline pH. Such organisms are usually entitled to be acid-tolerant. This chapter, however, concentrates on acidophilic organisms, which by definition are those microbes which are able to grow at pH values smaller than 3, but are unable to thrive at neutral pH (Fig. 9.1). Some of them grow well even at pH values close to 0. This is not a privilege of prokaryotes, as occasionally claimed (Fig. 9.1A,B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albertano P (1995) Microalgae from sulphuric acid environments. In: Wiessner W, Schnepf E, Starr RC (eds) Algae, environment and human affairs. Biopress, Bristol, pp 19–39

    Google Scholar 

  • Albertano P, Pinto G, Santisi S, Taddei R (1981) Spermatozopsis acidophila Kalina (Chlorophyta, Volvocales), a little-known alga from highly acidic environments. G Bot Ital 115: 65–76

    Google Scholar 

  • Almer B, Dickson W, Ekström C, Hörnström E, Miller U (1974) Effects of acidification on Swedish Lakes. Ambio 3: 30–36

    Google Scholar 

  • Bakker EP (1990) The role of alkali-cation transport in energy coupling of neutrophilic and acidophilic bacteria: an assessment of methods and concepts. FEMS Microbiol Rev 75:319–334

    CAS  Google Scholar 

  • Beardall J, Johnston A, Raven J (1998) Environmental regulation of CO2-concentrating mechanisms in microalgae. Can J Bot 76: 1010–1017

    CAS  Google Scholar 

  • Boenzi D, Luca PD, Taddei R (1977) Fatty acids in Cyanidium. G Bot Ital 111: 129–134

    CAS  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49: 359 - 378

    PubMed  CAS  Google Scholar 

  • Brierley JA (1990) Acidophilic thermophilic archaebacteria: potential application for metal recovery. FEMS Microbiol Rev 75: 287–292

    CAS  Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179: 480–483

    PubMed  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Capasso L, Pinto G (1982) Resistance of the alga Spermatozopsis acidophila Kalina ( Chlorophyta, Volvocales) to heavy metals. G Bot Ital 116: 275–282

    Google Scholar 

  • Carandang JS, Pick U, Sekler I, Gimmler H (1992) K+-fluxes and K+-content in Dunaliella acidophils an alga with positive electrical potentials. I. Low affinity uptake systems. J Plant Physiol 139: 413–421

    Google Scholar 

  • Carandang JSR VI, Gimmler H (1998) Vitamin uptake by the green alga Dunaliella acidophila. Manila J Sci 1: 5–8

    Google Scholar 

  • Cobley JG, Cox JC (1983) Energy conservation in acidophilic bacteria. Microbiol Rev 47: 579–595

    PubMed  CAS  Google Scholar 

  • Cooke WB (1966) The occurence of fungi in acid mine drainage. Proc Ind Waste Conf 21: 58–274

    Google Scholar 

  • Della Greca M, Monaco P, Pinto G, Pollio A, Previtera L (1989) Lipid composition of the acidophilic alga Dunaliella acidophila. II. Molecular species of galactolipids. Biochim Biophys Acta 1004: 271–273

    Google Scholar 

  • De Luca P, Moretii A, Taddei R (1978) Presence of Cyanidioschyzon merolae in extra-European acidic environments: USA and Indonesia. Delpinoa 18 - 19: 69–76

    Google Scholar 

  • De Luca P, Gambardella R, Merola AA (1979) Thermoacidophilic algae of North America and Central America. Bot Gaz 140: 418–427

    Google Scholar 

  • De Luca P, Musacchio A, Taddei R (1981) Acidophilic algae from the fumaroles of Mount Lawu, Java, locus classicus of Cyanidium caldarium. G Bot Ital 115: 1–10

    Google Scholar 

  • Deveau JST, Khosravani H, Lew R, Colman B (1998) C02 uptake mechanism in Eremosphaera viridis. Can J Bot 76: 1161–1164

    CAS  Google Scholar 

  • Di Martino Rigano V, Vona V, Di Martino C, Rigano C (1987) Regulatory aspects of NH4+ utilization in the acidophilic thermophilic unicellular red alga Cyanidium caldarium. New Phytol 105: 247–254

    Google Scholar 

  • Enami I (1978) Mechanisms of the acidophily and thermophily of Cyanidium caldarium. Part 5. Acid and heat stabilities of the soluble proteins. Plant Cell Physiol 19: 869–876

    CAS  Google Scholar 

  • Enami I, Fukada I (1975) Mechanism of the acido- and thermophily of Cyanidium caldarium Geitler. I. Effect of temperature, pH and light intensity on the photosynthetic oxygen evolution of intact and treated cells. Plant Cell Physiol 15: 211–220

    Google Scholar 

  • Enami I, Fukada I (1977) Mechanism of the acido- and thermophily of Cyanidium caldarium Geitler. Part 3. Loss of these characteristics due to detergent treatment. Plant Cell Physiol 18: 671–680

    Google Scholar 

  • Enami I, Kura-Hotta M (1984) Effect of intracellular ATP levels on the light-induced proton efflux from intact cells of Cyanidium caldarium. Plant Cell Physiol 25: 1107–1114

    CAS  Google Scholar 

  • Enami I, Nagashima H, Fukada I (1975) Mechanism of the acido- and thermophily of Cyanidium caldarium Geitler. II. Physiological role of the cell wall. Plant Cell Physiol 15:221-–231

    Google Scholar 

  • Enami I, Akutsu H, Kyogoku Y (1986) Intracellular pH regulation in an acidophilic unicellular alga, Cyanidium caldarium: 31P-NMR determination of intracellular pH. Plant Cell Physiol 27: 1351–1359

    CAS  Google Scholar 

  • Enami I, Murayama H, Ohta H, Kamo M, Nakazato K, Shen JR (1995) Isolation and characterization of a photosystem II complex from the red alga Cyanidium caldarium: association of cytochrome c-550 and a 12-kDa protein with the complex. Biochim Biophys Acta 1232: 208–216

    PubMed  Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic Press, London, 255 pp

    Google Scholar 

  • Fuggi A (1989) Short-term regulation of nitrate uptake by a pump and leak mechanism in the acidophilic nonvacuolated alga Cyanidium caldarium. Biochim Biophys Acta 974: 141–148

    CAS  Google Scholar 

  • Fuggi A (1993) Uptake and assimilation of nitrite in the acidophilic red alga Cyanidium caldarium Geitler. New Phytol 125: 351–360

    CAS  Google Scholar 

  • Fuggi A, Di Martino Rigano V, Vona V, Rigano C (1981) Nitrate and ammonium assimilation in algal cell suspensions and related pH variations in the external medium, monitored by electrodes. Plant Sci Lett 23: 129–138

    CAS  Google Scholar 

  • Fuggi A, Pinto G, Pollio A, Taddei R (1988a) Effects of NaCl, Na2SO4, H2SO4 and glucose on growth, photosynthesis, and respiration in the acidophilic alga Dunaliella acidophila ( Volvocales, Chlorophyta). Phycologia 27: 334–339

    Google Scholar 

  • Fuggi A, Pinto G, Pollio A, Taddei R (1988b) The role of glycerol in osmoregulation of the acidophilic alga Dunaliella acidophila ( Volvocales, Chlorophyta). Effect of solute stress on photosynthesis, respiration and glycerol synthesis. Phycologia 27: 439–446

    Google Scholar 

  • Geib K, Golldack D, Gimmler H (1996) Is there a requirement for an external carbonic anhy-drase in the extreme acid-resistant green alga Dunaliella acidophila? Eur J Phycol 31: 1–11

    Google Scholar 

  • Gimmler H (2001) Mutualistic relations between algae and fungi (excluding lichens). Prog Bot 62: 194–214

    CAS  Google Scholar 

  • Gimmler H, Carandang JS (1998) Do vitamins play a role in commensalistic relationships between microorganisms coexisting in extremely acid habitats? Acta Manilana 46: 1–7

    Google Scholar 

  • Gimmler H, Slovik S (1995) The mode of uptake of dissolved inorganic carbon in the extremely acid-resistant green alga Dunaliella acidophila. Theoretical considerations and experimental observations. Plant Physiol Biochem 33: 655–664

    CAS  Google Scholar 

  • Gimmler H, Weis U (1992) Dunaliella acidophila - life at pH 1.0. In: Avron M, Ben Amotz A (eds) Dunaliella. physiology, biochemistry and biotechnology. CRC Press, Boca Raton, Florida, pp 99–133

    Google Scholar 

  • Gimmler H, Kugel H, Leibfritz D, Mayer A (1988) Cytoplasmic pH of Dunaliella parva and Dunaliella acidophila as monitored by in vivo 3lP-NMR spectroscopy and the DMO method. Physiol Plant 74: 521–530

    CAS  Google Scholar 

  • Gimmler H, Weis U, Weiss C, Kugel H, Treffny B (1989) Dunaliella acidophila (Kalina)

    Google Scholar 

  • Masyuk —an alga with a positive membrane potential. New Phytol 113:175–178

    Google Scholar 

  • Gimmler H, Schieder M, Kowalski M, Zimmermann U, Pick U (1991a) Dunaliella acidophila - an alga with a positive zeta potential at its optimal pH for growth. Plant Cell Environ 14:261–269

    CAS  Google Scholar 

  • Gimmler H, Treffny B, Kowalski M, Zimmermann U (1991b) The resistance of Dunaliella acidophila against heavy metals: the importance of the zeta potential. J Plant Physiol 138: 708–716

    CAS  Google Scholar 

  • Gläser HU, Sekler I, Pick U (1990) Indications for a K+/H+ cotransport system in plasma membranes from two acidophilic microorganisms. Biochim Biophys Acta 1019: 293–299

    Google Scholar 

  • Gromov BV, Mamkaeva KA, Bobina VD (1988) Acidophilic Ochromonas (Chrysophyceae) from a sulfurous spring on Kunashir island (Russian SFSR USSR). IZV. Akad Nauk SSSR Ser Biol 0 (2): 293–296

    CAS  Google Scholar 

  • Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the alga Galdieria sulphuraria ( Rhodophyta ). Plant Cell Physiol 36: 633–638

    Google Scholar 

  • Gross W, Kuever J, Tischendorf G, Bouchaala N, Büsch W (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur J Phycol 33: 25–31

    Google Scholar 

  • Gutknecht J (1988) Proton conductance caused by long-chain fatty acids in phospholipid bilayers. J Membr Biol 106: 83–93

    PubMed  CAS  Google Scholar 

  • Hall HK, Karem KL, Foster JW (1995) Molecular response of microbes to environmental pH stress. Adv Microb Physiol 37: 229–272

    PubMed  CAS  Google Scholar 

  • Hargreaves JW, Whitton BA (1976) Effect of pH on growth of acid stream algae. Br Phycol J 11: 215–223

    Google Scholar 

  • Havas M, Hellebust JA, Hutchinson TC, Sheath RG (1982) Effects of long term natural acidification on the algal communities of tundra ponds at the Smoking Hills, Northwest Territories Canada. Can J Bot 60: 58–72

    Google Scholar 

  • Hirsch R, Carandang JS, Gimmler H (1992) Cl fluxes and CI content of Dunaliella acidophila — an alga with a positive membrane potential. J Exp Bot 43: 887–896

    CAS  Google Scholar 

  • Hirsch R, De Guis M, Falkner G, Gimmler H (1993) Flexible coupling of phosphate uptake in Dunaliella acidophila at extremely low pH values. J Exp Bot 44: 1321–1330

    CAS  Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27: 307–317

    CAS  Google Scholar 

  • Kalina T (1965) Zur Morphologie und Taxonomie der Gattung Spermatozopsis Korschikow (Volvocales) - Spermatozopsis acidophila sp. n. Preslia 37: 9–12

    Google Scholar 

  • Knoll AH, Bauld J (1989) The evolution of ecological tolerance in prokaryotes. Trans Roy Soc Edinb, Earth Sci 80: 209–223

    Google Scholar 

  • Kostrzewa M, Zetsche K (1993) Organization of plastic-encoded ATPase genes and flanking regions including homologues of infB and tsf in the thermophilic red alga Galdieria sul- phuraria. Plant Mol Biol 23: 67–76

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Guffanti AA (1983) Physiology of acidophilic and alkalophilic bacteria. Adv Microbial Physiol 24: 173–214

    CAS  Google Scholar 

  • Krulwich TA, Agus R, Schneier M, Guffanti AA (1985) Buffering capacity of bacilli that grow at different pH ranges. J Bacteriol 162: 768–772

    PubMed  CAS  Google Scholar 

  • Kura-Hotta M, Enami I (1981) Light-induced efflux from intact cells of Cyanidium caldarium. Plant Cell Physiol 22: 1175–1183

    CAS  Google Scholar 

  • Kwiatkowski RE, Rolff JC (1976) Effects of acidity on the phytoplankton and primary production of selected northern Ontario lakes. Can J Bot 54: 2546–2561

    CAS  Google Scholar 

  • Lane AE, Burris JE (1981) Effects of environmental pH on internal pH of Chlorella pyrenoi-dosa, Scenedesmus quadricauda and Euglena mutabilis. Plant Physiol 58: 439–442

    Google Scholar 

  • Langworthy TA (1978) Microbial life in extreme pH values. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, New York, pp 279–315

    Google Scholar 

  • Lopez-Arcilla AI, Marin I, Amils R (1995) Microbial ecology of an acid river: biotechnological applications. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (eds) Biohydrometallurgical processing vol II. University of Chile, Santiago, pp 63–74

    Google Scholar 

  • Madgwick JC, Ralph BJ (1977) The metal tolerant alga Hormidium fluitans (Gay) Heering from acid mine drainage waters in Northern Australia and Papua-New Guinea. In: Schwartz W (ed) Conference, bacterial leaching. Verlag Chemie, Weinheim, pp 85–91

    Google Scholar 

  • Mann H, Fyfe WS, Kerrie R, Wiseman M (1989) Retardation of toxic heavy metals dispersion from nickel-copper mine tailings, Sudbury District, Ontario: role of acidophilic microorganisms I. Biological pathway of metal retardation. Biorecovery 1: 155–172

    Google Scholar 

  • Matin A (1990) Keeping a neutral cytoplasm; the bioenergetics of obligate acidophiles. FEMS Microbiol Rev 75: 307–318

    CAS  Google Scholar 

  • McClintock M, Higinbotham N, Uribe E, Cleland RE (1982) Active irreversible accumulation of extreme levels of H2S04 in the brown alga Desmarestia. Plant Physiol 70: 771–774

    PubMed  CAS  Google Scholar 

  • Melkonian M, Preisig HR (1984) An ultrastructural comparison between Spermatozopsis and Dunaliella. ( Chlorophyceae ). Plant Syst Evol 146: 31–46

    Google Scholar 

  • Merola AA, Castaldo R, De Luca P, Gambardella R, Musacchio A, Taddei R (1981) Revision of Cyanidium caldarium three species of acidophilic algae. G Bot Ital 115: 189–196

    Google Scholar 

  • Michels M, Bakker EP (1985) Generation of a large, protonophore-sensitive proton motive force and pH differences in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius. J Bacteriol 161: 231–237

    PubMed  CAS  Google Scholar 

  • Miedema H, Staal M, Prins HBA (1996) pH induced proton permeability of plasma membrane vesicles. J Membr Biol 152:159–167

    PubMed  CAS  Google Scholar 

  • Miwa T, Esaki H, Umemori J, Hino T (1997) Activity in ruminai bacteria with special reference to acid tolerance. Appi Environ Microbiol 63: 2155–2158

    CAS  Google Scholar 

  • Nagashima H, Fukada I (1981) Morphological properties of Cyanidium caldarium and related algae in Japan. Jpn J Phycol 29: 237–242

    Google Scholar 

  • Nakatsu C, Hutchinson TC (1988) Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism. Microb Ecol 16: 213–231

    Google Scholar 

  • Nalewajko C, Colman B, Olaveson M (1997) Effects of pH on growth, photosynthesis, respiration, and copper tolerance of three Scenedesmus strains. Environ Exp Bot 37: 153–160

    CAS  Google Scholar 

  • Norris PR, Ingledew WJ (1992) Acidophilic bacteria: adaptations and applications. In: Herber SA, Sharp RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie, Glasgow, pp 115–142

    Google Scholar 

  • Norris PR, Johnson DB (1998) Acidophilic microorganisms. In: Horiskoshi K, Grant WD (eds) Extremophiles. Wiley-Liss, New York, pp 133–153

    Google Scholar 

  • Ohta H, Shirakawa H, Uchida K, Yoshida M, Matuo Y, Enami I (1997) Cloning and sequencing of the gene encoding the plasma membrane H+-ATPase from an acidophilic red alga Cyanidium caldarium. Biochim Biophys Acta 1319: 9–13

    PubMed  CAS  Google Scholar 

  • Pick U (1992) ATPases and ion transport in Dunaliella. In: Avron M, Ben Amotz A (eds) Dunaliella physiology, biochemistry and biotechnology. CRC Press, Boca Raton, Rorida, pp 99–133

    Google Scholar 

  • Pick U (1998) Dunaliella: a model extremophilic alga. Isr J Plant Sci 46:131-139 Pinto G (1993) Acid-tolerant and acidophilic algae from Italian environments. G Bot Ital 127:400–406

    Google Scholar 

  • Pinto G, Taddei R (1975) New stations for Cyanidium caldarium. New record in Italy. Delpinoa 14 - 15: 125–140

    Google Scholar 

  • Pinto G, Taddei R (1978) Algae of Italian acidic waters and soils. Delpinoa 18-19: 77–106

    Google Scholar 

  • Pollio A, Della Greca M, Monaco P, Pinto G, Previtera L (1988) Lipid composition of the acidophilic algae Dunaliella acidophila ( Volvocales, Chlorophyta). I. Non-polar lipids. Biochim Biophys Acta 963: 53–60

    Google Scholar 

  • Rai PK, Mallick N, Rai LC (1993) Physiological and biochemical studies on an acid-tolerant Chlorella vulgaris under copper stress. J Gen Appi Microbiol 39: 529–540

    CAS  Google Scholar 

  • Rai PK, Mallick N, Rai LC (1994a) Effect of nickel on certain physiological and biochemical behaviour of an acid-tolerant Chlorella vulgaris. Biometals 7: 193–200

    PubMed  CAS  Google Scholar 

  • Rai PK, Mallick N, Rai LC (1994b) Effect of Cu on growth, mineral uptake, photosynthesis and enzyme activities of Chlorella vulgaris at different pH values. Biomed Environ Sci 7: 56–67

    PubMed  CAS  Google Scholar 

  • Rai LC, Rai PK, Mallick N (1996) Regulation of heavy metal toxicity in acid-tolerant Chlorella: physiological and biochemical approaches. Environ Exp Bot 36: 99–109

    CAS  Google Scholar 

  • Raven JA (1976) Transport in algal cells. In: Pirson AD, Zimmermann H (eds) Encyclopedia of plant physiology vol 2 A. New Series, Springer, Berlin Heidelberg New York, pp 129–188

    Google Scholar 

  • Raven JA (1982) The energetics of freshwater algae; energy requirements for biosynthesis and volume regulation. New Phytol 92: 1–20

    Google Scholar 

  • Raven JA (1990) Sensing pH? Plant Cell Environ 13: 721–729

    CAS  Google Scholar 

  • Raven JA (1995) Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria. Phycologia 34: 93–101

    Google Scholar 

  • Remis D, Simonis W, Gimmler H (1992) Measurements of the transmembrane electrical potential of Dunaliella acidophila by microelectrodes. Arch Microbiol 158: 350–365

    CAS  Google Scholar 

  • Remis D, Treffny B, Gimmler H (1994) Light-induced H+ transport across the plasma membrane of the acid-resistant green alga Dunaliella acidophila. Plant Physiol Biochem 32: 1–10

    Google Scholar 

  • Rius N, Sole M, Francia A, Loren JG (1994) Buffering capacity and membrane H+ conductance of lactic acid-bacteria. FEMS Microbiol Lett 120: 291–295

    CAS  Google Scholar 

  • Satake K, Oyagi A, Iwao Y (1995) Natural acidification of lakes and rivers in Japan: The ecosystem of Lake Usoriko (pH 3.4-3.8). Water Air Soil Pollut 85:511-516 Schleper C, Puehler G, Kühlmorgen B, Zillig W (1995a) Life at extremely low pH. Nature 375: 741–742

    Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995b) Picrophilus gen.nov., fam nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    Google Scholar 

  • Seckbach J (1992) The Cyanidiophyceae and the “anomalous symbisosis” of Cyanidium caldarium. In: Ressier W (ed) Algae and symbiosis. Biopress, Bristol, pp 399–426

    Google Scholar 

  • Seckbach J (1995) The first eukaryotic cells: acid hot-spring algae. Evolutionary paths from prokaryotes to unicellular red algae via Cyanidium caldarium (pre-Rhodophyta) succession. Biol Phys 20: 335–345

    Google Scholar 

  • Seckbach J, Gonzales E, Wainwright IM, Gross W (1992) Peroxisomal function in the Cya- nidiophyceae (Rhodophyta): a discussion of phylogenetic relationship and the evolution of microbodies. Nova Hedwigia 55: 99–109

    Google Scholar 

  • Seckbach J, Ikan R, Ringelberg D, White D (1993) Sterols and phylogeny of the acidophilic hot springs algae Cyanidium caldarium and Galdieria sulphuraria. Phytochemistry 34: 1345–1349

    CAS  Google Scholar 

  • Sekler I, Gläser HU, Pick U (1991) Characterization of a plasma membrane H+-ATPase from the extremely acidophilic alga Dunaliella acidophila. J Membr Biol 121: 51–57

    PubMed  CAS  Google Scholar 

  • Sekler I, Remis D, Gimmler H, Pick U (1993) Inhibition of the plasma membrane H+-

    Google Scholar 

  • ATPase from Dunaliella acidophila by omeprazole. Biochim Biophys Acta 1142:88–92

    Google Scholar 

  • Sekler I, Weiss M, Pick U (1994) Activation of the Dunaliella acidophila plasma membrane H+-ATPase by trypsin cleavage of a fragment that contains a phosphorylation site. Plant Physiol 105: 1125–1132

    PubMed  CAS  Google Scholar 

  • Starkey RL, Waksman SA (1984) Fungi tolerant to external acidity and high concentrations of copper sulfate. J Bacteriol 45: 509 - 519

    Google Scholar 

  • Steinberg CEW, Schäfer H, Beisker W (1998) Do acid-tolerant cyanobacteria exist? Acta Hydrochim Hydrobiol 26: 13–19

    CAS  Google Scholar 

  • Strong JRP, Madgwick JC, Ralph BJ (1982) Metal-binding polysaccharides from the alga Klebshormidium fluitans. Biotechnol Lett 4: 239–242

    CAS  Google Scholar 

  • Uemura K, Anwaruzzaman Miyachi S, Yokota A (1997) Ribulose-l,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with strong specificity for CO2. Biochem Biophys Res Commun 233: 568–571

    PubMed  CAS  Google Scholar 

  • Weiss M, Pick U (1996) Primary structure and effect of pH on the expression of the plasma membrane H+-ATPase from Dunaliella acidophila and Dunaliella salina. Plant Physiol 112: 1693–1702

    PubMed  CAS  Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Environ Sci Technol 17: 582–590

    Google Scholar 

  • Ziegler K, Hauska G, Nelson N (1995) Cyanidium caldarium genes encoding subunits A and B of V-ATPase. Biochim Biophys Acta 1230:202–206

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gimmler, H. (2001). Acidophilic and Acidotolerant Algae. In: Rai, L.C., Gaur, J.P. (eds) Algal Adaptation to Environmental Stresses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59491-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59491-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63996-8

  • Online ISBN: 978-3-642-59491-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics