Skip to main content

Peripheral Vessels

  • Chapter
3D Image Processing

Abstract

Obstructive arterial disease of the lower extremities is an extremely common disease in Western countries (Dormandy et al. 1999a; Tierney et al. 2000) that requires an accurate diagnosis for correct treatment planning (Dormandy et al. 1999b; Semba et al. 2000). The examination of choice for the assessment of patients with obstructive arterial disease is X-ray angiography, which correctly demonstrates the arterial anatomy; nevertheless, its invasiveness has led to the development of noninvasive examinations. In many arterial districts X-ray angiography has been progressively substituted by noninvasive examinations, among which are magnetic resonance angiography (MRA) and computed tomography angiography (CTA) (Dillon et al. 1993; Schmiedl et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Coll DM, Herts BR, Davros WJ (2000) Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics 20:431–438.

    Article  CAS  PubMed  Google Scholar 

  • Dillon EH, van Leeuwen MS, Fernandez MA (1993) Spiral CT angiography. AJR 160:1273–1278.

    Article  CAS  PubMed  Google Scholar 

  • Dormandy J, Heeck L, Vig S (1999a) Predictors of early disease in the lower limbs. Semin Vase Surg 12:109–117.

    CAS  Google Scholar 

  • Dormandy J, Heeck L, Vig S (1999b) Peripheral arterial occlusive disease: clinical data for decision making. Introduction. Semin Vase Surg 12:95.

    CAS  Google Scholar 

  • Fishman EK (1997) High-resolution three-dimensional imaging from subsecond helical CT data sets: applications in vascular imaging. AJR 169:441–443.

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann D, Rubin GD, Alexander A (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214: 363–371.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Kobayashi H, Takagi R (1999) Three-dimensional CT angiographic assessment of vascular diseases using various postprocessing techniques: the voxel transmission and cruising eye view methods and their respective merits. Int Angiol 18:113–121.

    CAS  PubMed  Google Scholar 

  • Hong KC, Freeny PC (1999) Pancreaticoduodenal arcades and dorsal pancreatic artery: comparison of CT angiography with three-dimensional volume rendering, maximum intensity projection, and shaded surface display. AJR 172:925–931.

    Article  CAS  PubMed  Google Scholar 

  • Hu H (1999) Multi-slice helical CT: scan and reconstruction. Med Phys 26:5–18.

    Article  CAS  PubMed  Google Scholar 

  • Hu H, He D, Dennis W, Foley WD (2000) Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 215: 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Kim YM, Suh CH (2000) Helical CT angiography and three-dimensional reconstruction of total anomalous pulmonary venous connections in neonates and infants. AJR 175:1381–1386.

    Article  CAS  PubMed  Google Scholar 

  • Klingenbeck-Regn K, Schaller S, Flohr T (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31:110–124.

    Article  CAS  PubMed  Google Scholar 

  • Leiner T, Ho KY, Nelemans PJ (2000) Three-dimensional contrast-enhanced moving-bed infusion-tracking (MoBI-track) peripheral MR angiography with flexible choice of imaging parameters for each field of view. J Magn Reson Imaging 11:368–377.

    Article  CAS  PubMed  Google Scholar 

  • Maki JH, Chenevert TL, Prince MR (1998) Contrast-enhanced MR angiography. Abdom Imaging 23:469–484.

    Article  CAS  PubMed  Google Scholar 

  • Masutani Y, MacMahon H, Doi K (2001) Automated segmentation and visualization of the pulmonary vascular tree in spiral CT angiography: an anatomy-oriented approach based on three-dimensional image analysis. J Comput Assist Tomogr 25:587-597.

    Article  CAS  PubMed  Google Scholar 

  • McCollough CH, Zink FE (1999) Performance evaluation of a multi-slice CT system. Med Phys 26:2223–2230.

    Article  CAS  PubMed  Google Scholar 

  • Polacin A, Kalender WA, Marchal G (1992) Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology 185:29–35.

    CAS  PubMed  Google Scholar 

  • Rubin GD, Walker PJ, Dake MD (1993) 3D spiral CT angiography: an alternative imaging modality for the abdominal aorta and its branches. J Vase Surg 18:656–666.

    Article  CAS  Google Scholar 

  • Rubin GD, Napel SA, Ringl H (1996) Assessment of section profile and clinical images in helical CT with pitch values of 0.5–3.0 by using 180° linear extrapolation and segmented reconstruction. Radiology 201(P):246.

    Google Scholar 

  • Rubin GD, Shiau MC, Schmidt AJ (1999) Computed tomographic angiography: historical perspective and new state- of-the-art using multi detector-row helical computed tomography. J Comput Assist Tomogr 23(Suppl l):83–90.

    Google Scholar 

  • Rubin GD, Shiau MC, Leung AN (2000) Aorta and iliac arteries: single versus multiple detector-row helical CT angiography. Radiology 215:670–676.

    Article  CAS  PubMed  Google Scholar 

  • Ruehm SG, Nanz D, Baumann A (2001) 3D contrast-enhanced MR angiography of the run-off vessels: value of image subtraction. J Magn Reson Imaging 13:402–411.

    Article  CAS  PubMed  Google Scholar 

  • Schmiedl UP, Yuan C, Nghiem HV (1996) MR angiography of the peripheral vasculature. Semin Ultrasound CT MR 17:404–411.

    Article  CAS  PubMed  Google Scholar 

  • Semba CP, Murphy TP, Bakal CW (2000) Thrombolytic therapy with use of Alteplase (rt-PA) in peripheral arterial occlusive disease: review of the clinical literature. The Advisory Panel. J Vase Interv Radiol 11(P1):149–161.

    Article  CAS  Google Scholar 

  • Tierney S, Fennessy F, Hayes DB (2000) ABC of arterial and vascular disease. Secondary prevention of peripheral vascular disease. BMJ 320:1262–1265.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Catalano, C. et al. (2002). Peripheral Vessels. In: Caramella, D., Bartolozzi, C. (eds) 3D Image Processing. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59438-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59438-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63977-7

  • Online ISBN: 978-3-642-59438-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics