Skip to main content

Herpes Viral Proteins Blocking the Transporter Associated with Antigen Processing TAP — From Genes to Function and Structure

  • Chapter
Viral Proteins Counteracting Host Defenses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 269))

Abstract

In adaptation to the immune system, viruses have developed manifold mechanisms to evade the immune response, causing lifelong persistence in the host. Several members of the herpesvirus family are known to interfere with antigen presentation via MHC class I molecules. Here we compare the mechanistic and structural aspects of two unrelated herpesviral proteins, both of which have selected the transporter associated with antigen processing (TAP) as target for immune evasion. However, ICP47 (IE12) encoded by the herpes simplex virus and US6 from human cytomegalovirus utilize entirely different strategies to block TAP function. Detailed knowledge of the function and structure of these viral factors will help to understand TAP function and to design novel immune suppressors or vectors for gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abele R, Tampé R (1999) Function of the transport complex TAP in cellular immune recognition.Biochim Biophys Acta 1461:405–419

    Article  PubMed  CAS  Google Scholar 

  • Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJHJ, Ploegh HL, Peterson PA. Yang Y, Fruh K (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–621

    Google Scholar 

  • Ahn K, Meyer TH, Uebel S, Sempé P, Djaballah H, Yang Y, Peterson PA, Früh K. Tampé R (1996) Molecular mechanism and species-specificity of TAP inhibition by herpes-simplex virus protein ICP47. EMBO J 15:3247–3255

    Google Scholar 

  • Ahn KS, Angulo A, Ghazal P, Peterson PA, Yang Y, Früh K (1996) Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sei USA 93:10990–10995

    Google Scholar 

  • Ambagala AP, Hinkley S, Srikumaran S (2000) An early Pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99

    PubMed  CAS  Google Scholar 

  • Ambudkar SV, Dey S, Hrycyna CA. Ramachandra M. Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  PubMed  CAS  Google Scholar 

  • Androlewicz MJ, Anderson KS, Cresswell P (1993) Evidence that transporter associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endo­plasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sei USA 90:9130–9134

    Article  CAS  Google Scholar 

  • Androlewicz MJ, Cresswell P (1994) Human transporters associated with antigen processing possess a promiscuous peptide binding site. Immunity 1:7–14

    Article  PubMed  CAS  Google Scholar 

  • Barnes PD, Grundy JE (1992) Down-regulation of the class I HLA heterodimer and beta 2-microglobulin on the surface of cells infected with cytomegalovirus. J Gen Virol 73:2395–2403

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zühl F, Seemüller E (1998) The proteasome paradigm of a self-compartmen­talizing protease. Cell 92:367–380

    Article  PubMed  CAS  Google Scholar 

  • Beersma MF, Bijlmakers MJ. Ploegh HL (1993) Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. J Immunol 151:4455–4464

    PubMed  CAS  Google Scholar 

  • Beinert D, Neumann L, Uebel S, Tampé R (1997) Structure of the viral TAP-inhibitor ICP47 induced by membrane association. Biochemistry 36:4694–4700

    Article  PubMed  CAS  Google Scholar 

  • Cerundolo V, Alexander J, Anderson K, Lamb C. Cresswell P. McMichael A. Gotch F, Townsend A (1990) Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature 345:449–452

    Article  PubMed  CAS  Google Scholar 

  • Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T. Hutchison CAD. Kouzarides T, Martignetti JA, et al. (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD 169. Curr Top Microbiol Immunol 154:125–169

    PubMed  CAS  Google Scholar 

  • Cresswell P, Bangia N, Dick T. Diedrich G (1999) The nature of the MHC class I peptide loading complex. Immunol Rev 172:21–28

    Article  PubMed  CAS  Google Scholar 

  • Doige CA, Ames GF (1993) ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol 47:291–319

    Article  PubMed  CAS  Google Scholar 

  • Früh K, Ahn K, Djaballah H, Sempe P, van Endert PM. Tampé R. Peterson PA. Yang Y (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375:415–418

    Article  PubMed  Google Scholar 

  • Galocha B, Hill A, Barnett BC, Dolan A, Raimondi A, Cook RI Brunner J. McGeoch DJ. Ploegh HL (1997) The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocom­patibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NHrterminal 35 residues. J Exp Med 185:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL. Wiley DC (2001) Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sei USA 98:6794–6799

    Article  CAS  Google Scholar 

  • Gorbulev S, Abele R, Tampe R (2001) Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proc Natl Acad Sci USA 98:3732–3737

    Article  PubMed  CAS  Google Scholar 

  • Grandea AG, 3rd, Van Kaer L (2001) Tapasin: an ER chaperone that controls MHC class I assembly with peptide. Trends Immunol 22:194–199

    Article  PubMed  CAS  Google Scholar 

  • Hengel H, Esslinger C, Pool J, Goulmy E, Koszinowski UH (1995) Cytokines restore MHC class I complex formation and control antigen presentation in human cytomegalovirus-infected cells. J Gen Virol 76:2987–2997

    Article  PubMed  CAS  Google Scholar 

  • Hengel H, Flohr T, Hämmerling GJ, Koszinowski UH, Momburg F (1996) Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J Gen Virol 77:2287–2296

    Article  PubMed  CAS  Google Scholar 

  • Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E, Hämmerling GJ, Koszinowski UH, Momburg F (1997) A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6:623–632

    Article  PubMed  CAS  Google Scholar 

  • Hewitt EW, Gupta SS, Lehner PJ (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20:387–396

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415

    Article  PubMed  CAS  Google Scholar 

  • Hill AB, Barnett BC, McMichael AJ, McGeoch DJ (1994) HLA class I molecules are not transported to the cell surface in cells infected with herpes simplex virus types 1 and 2. J Immunol 152:2736–2741

    PubMed  CAS  Google Scholar 

  • Hinkley S, Hill AB, Srikumaran S (1998) Bovine herpesvirus-1 infection affects the peptide transport activity in bovine cells. Virus Res 53:91–96

    Article  PubMed  CAS  Google Scholar 

  • Honess RW, Roizman B (1974) Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14:8–19

    PubMed  CAS  Google Scholar 

  • Jugovic P, Hill AM, Tomazin R, Ploegh H, Johnson DC (1998) Inhibition of major histocompatibility complex class I antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47. J Virol 72:5076–5084

    PubMed  CAS  Google Scholar 

  • Koelle DM, Tigges MA, Burke RL, Symington FW, Riddell SR, Abbo H, Corey L (1993) Herpes simplex virus infection of human fibroblasts and keratinocytes inhibits recognition by cloned CD8 + cytotoxic T lymphocytes. J Clin Invest 91:961–968

    Article  PubMed  CAS  Google Scholar 

  • Koopmann JO, Post M, Neefjes JJ, Hämmerling GJ, Momburg F (1996) Translocation of long peptides by transporters associated with antigen processing (TAP). Eur J Immunol 26:1720–1728

    Article  PubMed  CAS  Google Scholar 

  • Kyritsis C, Gorbulev S, Hutschenreiter S, Pawlitschko K, Abele R, Tampe R (2001) Molecular mecha­nism and structural aspects of TAP inhibition by the cytomegalovirus protein US6. Submitted

    Google Scholar 

  • Lacaille VG, Androlewicz MJ (1998) Herpes simplex virus inhibitor ICP47 destabilizes the transporter associated with antigen processing (TAP) heterodimer. J Biol Chem 273:17386–17390

    Article  PubMed  CAS  Google Scholar 

  • Lankat-Buttgereit B, Tampä R (1999) The transporter associated with antigen processing TAP: structure and function. FEBS Lett 464:108–112

    Article  PubMed  CAS  Google Scholar 

  • Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P (1997) The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci USA 94:6904–6909

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Stam NJ, Ohlen C, Neefjes JJ, Hoglund P, Heemels MT, Bastin J, Schumacher TN, Townsend A, Karre K, et al. (1990) Empty MHC class I molecules come out in the cold. Nature 346:476–480

    Article  PubMed  CAS  Google Scholar 

  • Madden DR (1995) The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol 13:587–622

    Article  PubMed  CAS  Google Scholar 

  • McGeoch DJ, Dolan A, Donald S, Rixon FJ (1985) Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181:1–13

    Article  PubMed  CAS  Google Scholar 

  • McGeoch DJ, Moss HW, McNab D, Frame MC (1987) DNA sequence and genetic content of the Hindlll 1 region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. J Gen Virol 68:19–38

    Article  PubMed  CAS  Google Scholar 

  • Momburg F, Roelse J, Howard JC, Butcher GW, Hämmerling GJ, Neefjes JJ (1994) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367:648–651

    Article  PubMed  CAS  Google Scholar 

  • Müller KM, Ebensperger C, Tampé R (1994) Nucleotide binding to the hydrophilic C-terminal domain of the transporter associated with antigen processing (TAP). J Biol Chem 269:14032–14037

    PubMed  Google Scholar 

  • Neefjes JJ, Momburg F, Hämmerling GJ (1993) Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261:769–771

    Article  PubMed  CAS  Google Scholar 

  • Neumann L, Kraas W, Uebel S, Jung G, Tampä R (1997) The active domain of the herpes simplex virus protein ICP47: a potent inhibitor of the transporter associated with antigen processing. J Mol Biol 272:484–492

    Article  PubMed  CAS  Google Scholar 

  • Neumann L, Tampé R (1999) Kinetic analysis of peptide binding to the TAP transport complex: evidence for structural rearrangements induced by substrate binding. J Mol Biol 294:1203–1213

    Article  PubMed  CAS  Google Scholar 

  • Nijenhuis M, Hämmerling GJ (1996) Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site. J Immunol 157:5467–5477

    PubMed  CAS  Google Scholar 

  • Pamer E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16:323–358

    Article  PubMed  CAS  Google Scholar 

  • Pfänder R, Neumann L, Zweckstetter M, Seger C, Holak TA, Tampé R (1999) Structure of the active domain of the herpes simplex virus protein ICP47 in water/sodium dodecyl sulfate solution deter­mined by nuclear magnetic resonance spectroscopy. Biochemistry 38:13692–13698

    Article  PubMed  Google Scholar 

  • Ploegh HL (1998) Viral strategies of immune evasion. Science 280:248–253

    Article  PubMed  CAS  Google Scholar 

  • Posavad CM, Rosenthal KL (1992) Herpes simplex virus-infected human fibroblasts are resistant to and inhibit cytotoxic T-lymphocyte activity. J Virol 66:6264–6272

    PubMed  CAS  Google Scholar 

  • Powis SJ, Townsend AR, Deverson EV, Bastin J. Butcher GW, Howard JC (1991) Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 354:528–531

    Article  PubMed  CAS  Google Scholar 

  • Schumacher TN, Kantesaria DV, Serreze DV, Roopenian DC, Ploegh HL (1994) Transporters from H-2b, H-2d, H-2s, H-2k, and H-2g7 (NOD Lt) haplotype translocate similar sets of peptides. Proc Natl Acad Sei USA 91:13004–13008

    Article  CAS  Google Scholar 

  • Shepherd JC, Schumacher TN, Ashton-Rickardt PG, Imaeda S, Ploegh HL, Janeway CA, Tonegawa S (1993) TAP 1-dependent peptide translocation in vitro is ATP dependent and peptide selective [published erratum appears in Cell 1993 Nov 19:75(4):613], Cell 74:577–584

    Article  PubMed  CAS  Google Scholar 

  • Spies T, DeMars R (1991) Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351:323–324

    Article  PubMed  CAS  Google Scholar 

  • Tampé R, Urlinger S, Pawlitschko K, Uebel S. (1997). The transporters associated with antigen processing (TAP). In: Holland B (ed) Unusual secretory pathways: from bacteria to man. Springer, New York, pp 115–136

    Google Scholar 

  • Tomazin R, Hill AB, Jugovic P, York I, van Endert P. Ploegh HL, Andrews DW. Johnson DC (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15:3256–3266

    PubMed  CAS  Google Scholar 

  • Townsend A, Ohlen C, Foster L, Bastin J, Ljunggren HG, Karre K (1989) A mutant cell in which association of class I heavy and light chains is induced by viral peptides. Cold Spring Harbor Symp Quant Biol 54:299–308

    PubMed  CAS  Google Scholar 

  • Uebel S, Kraas W, Kienle S, Wiesmüller K-H, Jung G. Tampé R (1997) Recognition principle of the TAP-transporter disclosed by combinatorial peptide libraries. Proc Natl Acad Sei USA 94:8976–8981

    Article  CAS  Google Scholar 

  • Uebel S, Meyer TH, Kraas W, Kienle S, Jung G, Wiesmüller KH. Tampé R (1995) Requirements for peptide binding to the human transporter associated with antigen processing revealed by peptide scans and complex peptide libraries. J Biol Chem 270:18512–18516

    Article  PubMed  CAS  Google Scholar 

  • Uebel S, Tampé R (1999) Specificity of the proteasome and the TAP transporter. Curr Opin Immunol 11:203–208

    Article  PubMed  CAS  Google Scholar 

  • Urlinger S, Kuchler K, Meyer TH, Uebel S, Tampé R (1997) Intracellular location, complex-formation, and function of the transporter associated with antigen processing in yeast. Eur J Biochem 245:266–272

    Article  PubMed  CAS  Google Scholar 

  • van Endert PM, Tampé R, Meyer TH, Tisch R, Bach JF, McDevitt HO (1994) A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1:491–500

    Article  PubMed  Google Scholar 

  • Wang K, Früh K, Peterson PA. Yang Y (1994) Nucleotide binding of the C-terininal domains of the major histocompatibility complex-encoded transporter expressed in Dvosophila melcmogaster cells. FEBS Lett 350:337–341

    Article  CAS  Google Scholar 

  • Warren AP, Ducroq DH, Lehner PJ, Borysiewicz LK (1994) Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol 68:2822–2829

    PubMed  CAS  Google Scholar 

  • Yamashita Y, Shimokata K, Mizuno S, Yamaguchi H, Nishiyamu Y (1993) Down-regulation of the surface expression of class I MHC antigens by human cytomegalovirus. Virology 193:727–736

    Article  PubMed  CAS  Google Scholar 

  • Yewdell J, Anton LC, Bacik I, Schubert U. Snyder HL, Bennink JR (1999) Generating MHC class I ligands from viral gene products. Immunol Rev 172:97–108

    Article  PubMed  CAS  Google Scholar 

  • York IA, Roop C, Andrews DW. Riddell SR. Graham FL. Johnson DC (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8 + T lymphocytes. Cell 77:525–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, D., Tampé, R. (2002). Herpes Viral Proteins Blocking the Transporter Associated with Antigen Processing TAP — From Genes to Function and Structure. In: Koszinowski, U.H., Hengel, H. (eds) Viral Proteins Counteracting Host Defenses. Current Topics in Microbiology and Immunology, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59421-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59421-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63974-6

  • Online ISBN: 978-3-642-59421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics