Skip to main content

Herpes Viral Proteins Manipulating the Peptide Transporter TAP

  • Chapter
Viral Proteins Counteracting Host Defenses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 269))

Abstract

The peptide transporter associated with antigen processing (TAP) is crucial for class I-restricted antigen presentation because it transfers cytosolic peptides into the endoplasmic reticulum (ER) lumen for class I binding. It is therefore not surprising that TAP is targeted for inactivation by many viruses. Herpesviruses have been very successful in designing various proteins that inactivate TAP. We summarise current knowledge on the class I antigen presentation pathway and the function, structure and action of TAP and its viral inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ, Ploegh HL, Peterson PA, Yang Y, Früh K (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–621

    Article  PubMed  CAS  Google Scholar 

  • Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H, Yang Y, Peterson PA, Früh K, Tampe R (1996) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247–3255

    PubMed  CAS  Google Scholar 

  • Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99

    PubMed  CAS  Google Scholar 

  • Andersen MH, Bonfill JE, Neisig A, Arsequell G, Sondergaard I, Valencia G, Neefjes J, Zeuthen J, Elliott T, Haurum JS (1999) Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific CTL. J Immunol 163:3812–3818

    PubMed  CAS  Google Scholar 

  • Androlewicz MJ and Cresswell P (1994) Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity 1:7–14

    Article  PubMed  CAS  Google Scholar 

  • Beinert D, Neumann L, Uebel S, Tampe R (1997) Structure of the viral TAP-inhibitor ICP47 induced by membrane association. Biochemistry 36:4694–4700

    Article  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • DeMars R, Rudersdorf R, Chang C, Petersen J, Strandtmann J, Korn N, Sidwell B, Orr HT (1985) Mutations that impair a posttranscriptional step in expression of HLA-A and -B antigens. Proc Natl Acad Sei USA 82:8183–8187

    Article  Google Scholar 

  • Deverson EV, Leong L, Seelig A, Coadwell WJ, Tredgett EM, Butcher GW, Howard JC (1998) Functional analysis by site-directed mutagenesis of the complex polymorphism in rat transporter associated with antigen processing. J Immunol 160:2767–2779

    PubMed  CAS  Google Scholar 

  • Galocha B, Hill A, Barnett BC, Dolan A, Raimondi A, Cook RF, Brunner J, McGeoch DJ, Ploegh HL (1997) The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J Exp Med 185:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Gromme M, van der Valk R, Sliedregt K, Vernie L, Liskamp R, Hammerling G, Koopmann JO, Momburg F, Neefjes J (1997) The rational design of TAP inhibitors using peptide substrate modifications and peptidomimetics. Eur J Immunol 27:898–904

    Article  PubMed  CAS  Google Scholar 

  • Henderson RA, Michel H, Sakaguchi K, Shabanowitz J, Appella E, Hunt DF. Engelhard VH (1992) HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255:1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E, Hammerling GJ, Koszinowski UH, Momburg F (1997) A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6:623–632

    Article  PubMed  CAS  Google Scholar 

  • Hewitt EW, Gupta SS, Lehner PJ (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20:387–396

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Hinkley S, Hill AB, Srikumaran S (1998) Bovine herpesvirus-1 infection affects the peptide transport activity in bovine cells. Virus Res 53:91–96

    Article  PubMed  CAS  Google Scholar 

  • Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP–driven conformational control in DNA double-strand break repair and the ABC–ATPase superfamily. Cell 101:789–800

    Article  PubMed  CAS  Google Scholar 

  • Kelly A, Powis SH, Kerr LA, Mockridge I, Elliott T, Bastin J, Uchanska-Ziegler B, Ziegler A, Trowsdale J, Townsend A (1992) Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 355:641–644

    Article  PubMed  CAS  Google Scholar 

  • Lacaille VG and Androlewicz M J (1998) Herpes simplex virus inhibitor ICP47 destabilizes the transporter associated with antigen processing (TAP) heterodimer. J Biol Chem 273:17386–17390

    Article  PubMed  CAS  Google Scholar 

  • Momburg F, Roelse J, Howard JC, Butcher GW, Hammerling GJ, Neefjes JJ (1994a) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367:648–651

    Article  PubMed  CAS  Google Scholar 

  • Momburg F, Neefjes JJ, Hammerling GJ (1994b) Peptide selection by MHC-encoded TAP transporters. Current Opinion in Immunology 6:32–37

    Article  PubMed  CAS  Google Scholar 

  • Neefjes J, Gottfried E, Roelse J, Gromme M, Obst R, Hammerling GJ, Momburg F (1995) Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Eur J Immunol 25:1133–1136

    Article  PubMed  CAS  Google Scholar 

  • Neisig A, Wubbolts R, Zang X, Melief C, Neefjes J (1996) Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J Immunol 156:3196–3206

    PubMed  CAS  Google Scholar 

  • Neumann L, Kraas W, Uebel S, Jung G, Tampe R (1997) The active domain of the herpes simplex virus protein ICP47: a potent inhibitor of the transporter associated with antigen processing. J Mol Biol 272:484–492

    Article  PubMed  CAS  Google Scholar 

  • Nijenhuis M and Hammerling GJ (1996) Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site. J Immunol 157:5467–5477

    PubMed  CAS  Google Scholar 

  • Ortmann B, Copeman J, Lehner PJ, Sadasivan B, Herberg JA, Grandea AG, Riddell SR, Tampe R, Spies T, Trowsdale J, Cresswell P (1997) A critical role for tapasin in the assembly and function of mul-timeric MHC class I-TAP complexes. Science 277:1306–1309

    Article  PubMed  CAS  Google Scholar 

  • Pamer E and Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16:323–358

    Article  PubMed  CAS  Google Scholar 

  • Reits EA, Griekspoor AC, Neefjes J (2000a) How does TAP pump peptides?Insights from DNA repair and traffic ATPases. Immunol Today 21:598–600

    Article  PubMed  CAS  Google Scholar 

  • Reits EA, Vos JC, Gromme M, Neefjes J (2000b) The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404:774–778

    Article  PubMed  CAS  Google Scholar 

  • Reits EA, Benham AM, Plougastel B, Neefjes J, Trowsdale J (1997) Dynamics of proteasome distribution in living cells. EMBO J 16:6087–6094

    Article  PubMed  CAS  Google Scholar 

  • Salter RD and Cresswell P (1986) Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J 5:943–949

    PubMed  CAS  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  PubMed  CAS  Google Scholar 

  • Schumacher TN, Kantesaria DV, Heemels MT, Ashton-Rickardt PG, Shepherd JC, Fruh K, Yang Y, Peterson PA, Tonegawa S, Ploegh HL (1994) Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med 179:533–540

    Article  PubMed  CAS  Google Scholar 

  • Sun PD and Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24:269–291

    Article  PubMed  CAS  Google Scholar 

  • Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15:3256–3266

    PubMed  CAS  Google Scholar 

  • Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    Article  PubMed  CAS  Google Scholar 

  • Townsend A, Ohlen C, Bastin J, Ljunggren HG, Foster L, Karre K (1989) Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340:443–448

    Article  PubMed  CAS  Google Scholar 

  • Uebel S, Kraas W, Kienle S, Wiesmuller KH, Jung G, Tampe R (1997) Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proc Natl Acad Sci USA 94:8976–8981

    Article  PubMed  CAS  Google Scholar 

  • Vos JC, Spee P, Momburg F, Neefjes J (1999) Membrane topology and dimerization of the two subunits of the transporter associated with antigen processing reveal a three-domain structure. J Immunol 163:6679–6685

    PubMed  CAS  Google Scholar 

  • Wei ML and Cresswell P (1992) HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356:443–146

    Article  PubMed  CAS  Google Scholar 

  • York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77:525–535.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reits, E., Griekspoor, A., Neefjes, J. (2002). Herpes Viral Proteins Manipulating the Peptide Transporter TAP. In: Koszinowski, U.H., Hengel, H. (eds) Viral Proteins Counteracting Host Defenses. Current Topics in Microbiology and Immunology, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59421-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59421-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63974-6

  • Online ISBN: 978-3-642-59421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics