Skip to main content

A Newton-Krylov Algorithm for Aerodynamic Analysis and Design

  • Conference paper
Computational Fluid Dynamics 2002

Abstract

A Newton-Krylov algorithm is presented for analysis and optimization of single- and multi-element airfoil configurations. The algorithm provides fast and robust convergence for the compressible Navier-Stokes equations with a one-equation turbulence model. Objective function gradients are efficiently computed using the preconditioned generalized minimum residual method to solve the discrete adjoint equations. A number of key features of the algorithm are highlighted. Several examples are given showing the effectiveness of the algorithm in high-lift system design, multi-point design, and generation of a Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Nocedal, S.J. Wright: Numerical Optimization, Springer-Ver lag, New York, 1999.

    Book  MATH  Google Scholar 

  2. G. A. Wrenn: “An Indirect Method for Numerical Optimization Using the Kreisselmeier-Stienhauser Function”, NASA CR-4220, March 1989.

    Google Scholar 

  3. J.E. Dennis Jr., R.B. Schnabel: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

    MATH  Google Scholar 

  4. D.E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.D.W. Zingg et al.

    Google Scholar 

  5. W.K. Anderson, J.C. Newman, D.L. Whitfield, E.J. Nielsen: AIAA J., 39(l):56–63, 2001.

    Google Scholar 

  6. M.D. Gunzburger: “Introduction into Mathematical and Physical Aspects of Flow Control and Optimization”, von Karman Institute for Fluid Dynamics Lecture Series 1997–05, Belgium, 1997.

    Google Scholar 

  7. O. Pironneau: J. Fluid Mech., 64:97–110, 1974.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Jameson: J. Sci. Comput., 3:233–260, 1988.

    Article  MATH  Google Scholar 

  9. M.B. Giles, N.A. Pierce: Flow, Turbulence and Combustion 65:393–415, 2000.

    Article  MATH  Google Scholar 

  10. B. Mohammadi: “Practical Applications to Fluid Flows of Automatic Differentiation for Design Problems”, von Karman Institute for Fluid Dynamics Lecture Series 1997–05, Belgium, 1997.

    Google Scholar 

  11. J. Reuther, A. Jameson, J.J. Alonso, M.J. Remlinger, D. Saunders: Parts 1 and 2, J. Aircraft, 36(l):51–74, 1999.

    Google Scholar 

  12. J. Elliott, J. Peraire: Aeronautical J., 102:365–376, 1998.

    Google Scholar 

  13. E.J. Nielsen, W.K. Anderson: AIAA J., 40(6):1155–1163, 2002.

    Article  ADS  Google Scholar 

  14. M. Nemec, D.W. Zingg: AIAA J., 40(7):1146–1154, 2002.

    Article  ADS  Google Scholar 

  15. A. Pueyo, D.W. Zingg: AIAA J., 36(11):1991–1997, 1998.

    Article  ADS  Google Scholar 

  16. D.W. Zingg, S. De Rango, A. Pueyo: “Advances in Algorithms for Computing Aerodynamic Flows”, in Frontiers of Computational Fluid Dynamics 2002, D.A. Caughey, M.M. Hafez, eds., World Scientific, Singapore, 2002.

    Google Scholar 

  17. P.R. Spalart, S.R. Almiaras: “A One-Equation Turbulence Model for Aerodynamic Flows”, AIAA 92–0439, Jan. 1992.

    Google Scholar 

  18. M. Nemec, D.W. Zingg: “From Analysis to Design of High-Lift Configurations Using a Newton-Krylov Algorithm”, Paper 173, ICAS 2002, September 2002.

    Google Scholar 

  19. T. Chisholm, D.W. Zingg: “A Fully-Coupled Newton-Krylov Solver for Turbulent Aerodynamic Flows”, Paper 333, ICAS 2002, September 2002.

    Google Scholar 

  20. M. Nemec, D.W. Zingg, T.H. Pulliam: “Multi-Point and Multi-Objective Aerody¬namic Shape Optimization”, AIAA 2002–5548, September 2002.

    Google Scholar 

  21. Y. Saad, M.H. Schultz: SIAM J. on Sci. and Stat. Comput., 7(3):856–869, 1986.

    Google Scholar 

  22. T.J. Barth, S.W. Linton: “Unstructured Mesh Newton Solver for Compressible Fluid Flow and Its Parallel Implementation”, AIAA 95–0221, Jan. 1995.

    Google Scholar 

  23. M. Nemec, D.W. Zingg: AIAA J., 38(3):402–410, 2000.

    Article  ADS  Google Scholar 

  24. M. Benzi, D.B. Szyld, A. Van Duin: SIAM J. Sci. Comput. 20(5):1652–1670, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  25. P.R. McHugh, D.A. Knoll: AIAA J, 12(12):2394–2400, 1994.

    Article  ADS  Google Scholar 

  26. W.A. Mulder, B. van Leer: J. Comp. Phys., 59:232–246, 1985.

    Article  ADS  MATH  Google Scholar 

  27. H. Lomax, T.H. Pulliam, D.W. Zingg: Fundamentals of Computational Fluid Dynamics, Springer-Verlag, Berlin, Heidelberg, 2001.

    Google Scholar 

  28. M. Blanco, D.W. Zingg: AIAA J, 36(4):607–612, 1998.

    Article  ADS  Google Scholar 

  29. P. Guezaine: AIAA J., 39(3):528–531, 2001.

    Article  ADS  Google Scholar 

  30. T.H. Pulliam: “Efficient Solution Methods for the Navier-Stokes Equations”, von Karman Institute for Fluid Dynamics Lecture Series, Belgium, Jan. 1986.

    Google Scholar 

  31. P. Godin, D.W. Zingg, T.E. Nelson: AIAA J., 35(2):237–243, 1997.

    Article  ADS  MATH  Google Scholar 

  32. I.R.M. Moir: “Measurements on a Two-Dimensional Aerofoil with High-Lift De-vices”, AR 303, AGARD, Aug. 1994.

    Google Scholar 

  33. S. De Rango, D.W. Zingg: AIAA J., 39(7):1296–1304, 2001.

    Article  ADS  Google Scholar 

  34. CL. Rumsey, S.X. Ying: Prog, in Aero. Sciences, 38: 145–180, 2002.

    Google Scholar 

  35. CP. van Dam: Prog, in Aero. Sciences, 38: 101–144, 2002.

    Google Scholar 

  36. M. Drela: “Pros & Cons of Airfoil Optimization”, in Frontiers of Computational Fluid Dynamics 1998, D.A. Caughey, M.M. Hafez, eds., World Scientific, Singapore, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zingg, D.W., Nemec, M., Chisholm, T.T. (2003). A Newton-Krylov Algorithm for Aerodynamic Analysis and Design. In: Armfield, S.W., Morgan, P., Srinivas, K. (eds) Computational Fluid Dynamics 2002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59334-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59334-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63938-8

  • Online ISBN: 978-3-642-59334-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics