Skip to main content
  • 416 Accesses

Abstract

≫Where humans can’t go, they build robots.≪ This principle is common practice in space science and nuclear power engineering as demonstrated i.e. with remote cars on planet Mars or robots working on nuclear substances steered by humans located behind protecting glass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aaronson OS, Tulipan NB, Cywes R, Sundell HW, Davis GH, Bruner JP, Richards WO (2002) Robot-assisted endoscoric intrauterine myelo- meninocale repair: A feasibility study. Pediatr Neurosurg 36:85–89.

    Article  PubMed  Google Scholar 

  2. Adler JR Jr, Murphy MJ, Chang SI, Hancock SL (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1299–1306, discussion 1306–1307.

    PubMed  Google Scholar 

  3. Bauer A, Börner M, Lahmer A (1999) Clinical experience with a medical robotic system for total hip replacement. In: Nolte LP, Ganz R (eds) Computer assisted orthopedic surgery. Hogrefe & Huber, Bern, pp 128–133.

    Google Scholar 

  4. Benabid AL, Cinquin P, Lavallée S, Le Bas JF, Demongeot J, de Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Technological design and preliminary results. Appl Neurophysiol 50:153–154.

    CAS  Google Scholar 

  5. Benabid AL, Hoffmann D, Ashraff A, Koudsie A, Bas JFL (1999) Robotic guidance in advanced imaging environments. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 571–583.

    Google Scholar 

  6. Bernsmann K, Langlotz U, Ansari B, Wiese M (2000) Computerassistierte navigierte Pfannenplazierung in der Hüftendoprothetik - Anwendungsstudie im klinischen Routinealltag. Z Orthop 138:515–521.

    Article  PubMed  CAS  Google Scholar 

  7. Boehm DH, Reichenspurner H, Detter C, Arnold M, Gulbins H, Meiser B, Reichart B (2000) Clinical use of a computer-enhanced surgical robotic system for endoscopic coronary artery bypass grafting on the beating heart. Thorac Cardiovasc Surg 48:198–202.

    Article  PubMed  CAS  Google Scholar 

  8. Börner M, Bauer A, Lahmer A (1997) Rechnerunterstützter Robotereinsatz in der Hüftendoprothetik. Orthopäde 26:251–257.

    PubMed  Google Scholar 

  9. Börner M, Lahmer A, Bauer A, Stier U (1998) Experiences with the ROBODOC system in more than 1000 cases. In: Lemke HU, Vannier MW, Inamura K, Farman AG (eds) Computer aided radiology and surgery. Proceedings of the 12th International Symposium and Exhibition (CARS ’98), Tokyo, Japan, June 1998. Elsevier, Amsterdam, pp 689–693.

    Google Scholar 

  10. Börner M, Wiesel U (2002) Rechnerunterstützter Robotereinsatz in der Hüftendoprothetik— Erfahrungen bei über4000 Patienten,50.Jahrestagung der Vereinigung Süddeutscher Orthopäden 01.-05.05.2002.

    Google Scholar 

  11. Börner M, Wiesel U (2001) Erste Ergebnisse der roboterassisierten Kniegelenkendoprothetik mit dem ROBODOC(r)-System. Trauma Berufskrankh 3:355–359.

    Article  Google Scholar 

  12. Brandt G, Radermacher K, Zimolong A et al. (2000) CRIGOS - Entwicklung eines Kompaktrobotersystems für die bildgeführte orthopädische Chirurgie. Orthopäde 29:645–649.

    PubMed  CAS  Google Scholar 

  13. Burkart A, Debski RE, McMahon PJ etal. (2001) Precision of ACL tunnel placement using traditional and robotic techniques.Comp Aided Surg 6:270–278.

    Article  CAS  Google Scholar 

  14. Burghart C, Krempien RRedlich T et al. (1999) Robot assisted craniofacial surgery: first clinical evaluation. In: Lemke HU, Vannier MW, Inamura K, Farman AG (eds) Computer assisted radiology and surgery. Proceedings of the 13th International Congress and Exhibition (CARS ’99), Paris, France, June 1999. Elsevier, Amsterdam, pp 828–833.

    Google Scholar 

  15. Cadeddu JA, Stoianovici D, Kavoussi LR (1998) Robotic surgery in urology. Urol Clin North Am 25:75–85.

    Article  PubMed  CAS  Google Scholar 

  16. Cadière GB, Himpens J, Vertruyen M, Bruyns J, Germay O, Leman G, Izizaw R (2001) Evalutation of telesurgical (robotic) Nissenfundoplication 2001. Surg Endosc 15:918–923.

    Article  PubMed  Google Scholar 

  17. Chinzei K, Hata N, Jolesz FA, Kikinis R (2000) MR compatible surgical assist robot: system integration and preliminary feasibility study.In: Delp SL, DiGioia AM, Jaramaz B (eds) Proceedings of Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2000), Pittsburgh, PA, October 2000. Lecture Notes in Computer Science 1935. Springer, Berlin Heidelberg New York Tokyo, pp 921–930

    Google Scholar 

  18. Cleary K, Banovac F, Lindisch D, Watson V (2001) Robotically assisted spine needle placement: program plan and cadaver study. Computer Based Medical Systems (CBMS), 14th IEEE International Symposium. IEEE, pp 339–342.

    Google Scholar 

  19. Cleary K, Stoianovici D, Watson V, Cody R, Hum B, Lindisch D (2000) Robotics for percutaneous spinal procedures: initial report. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K(eds) Computer assisted radiology and surgery. Proceedings of the 14th International Congress and Exhibition (CARS 2000), San Francisco, CA,28 June-1 July 2000. Elsevier, Amsterdam, pp 128–133.

    Google Scholar 

  20. Davies BL, Hibberd RD, Ng WS, Timoney AG, Wickham JEA (1991) A surgeon robot for prostatectomies. Presentation at Fifth International Conference on Advanced Robotics (ICAR ’91), z.

    Google Scholar 

  21. Diegeler A, Falk V, Walther T, Mohr FW (1997) Minimally invasive coronary-artery bypass surgery without extracorporeal circulation. N Eng J Med 336:1454.

    Article  CAS  Google Scholar 

  22. DiGioia AM (1998) What is computer assisted orthopaedic surgery? Clin Orthop Rel Res 354:2–4.

    Article  Google Scholar 

  23. Donias HW, Karamandoukian RL, Glick PL, Bergsland J, Karmandoukian HL (2002) Survey of resident training in robotic surgery. Am Surg 68:177–181.

    PubMed  Google Scholar 

  24. Falcone T, Goldberg J, Garcia-Ruiz A, Margossian H, Stevens L (1999) Full robotic assistance for laparoscopic tubal anastomosis: a case report. J Laparoendosc Adv Surg Tech9:z–z

    Google Scholar 

  25. Falk V, Gummert JF, Walther T, Hayase M, Berry GJ, Mohr FW (1999) Quality of computer enhanced totally endoscopic coronary bypass graft anastomosis-comparison to conventional technique. Eur J Cardiothorac Surg 15:260–264, discussion 264–265.

    Article  PubMed  CAS  Google Scholar 

  26. Falk V, Walther T, Diegeler A et al. (1996) Echocardiographic Monitoring of minimally invasive mitral valve surgery using an endoaortic clamp. J Heart Valve Dis 5:630–637.

    PubMed  CAS  Google Scholar 

  27. Glauser D, Flury R, Villotte N, Burckhardt C (1993) Mechanical concept of the neurosurgical robot Minerva. Robotica 11:567–575.

    Article  Google Scholar 

  28. Goh PMY, Lomanto D, So JBY (2002) Robotic-assisted laparoscopic cholecystectomy. The first in Asia. Surg Endoscopy 16:216–217.

    CAS  Google Scholar 

  29. Guthart GS, Salisbury JJK (2000) The intuitive telesurgery system: overview and application. Proceedings of IEEE International Conference on Robotics and Automation, pp 618–621.

    Google Scholar 

  30. Jakopec M, Harris S, Baena FRy, Gomes P, Cobb J, Davies B (2001) The first clinical application of a ≫hands-on≪ robotic knee surgery system. Comp Aid Surg 6:329–339.

    CAS  Google Scholar 

  31. Howe RD, Matsuoka Y (1999) Robotics for surgery. Annu Rev Blomed Eng 1:211–240.

    Article  CAS  Google Scholar 

  32. Kaiser WA, Fischer H, Vagner J, Selig M (2000) Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest Radiol 35:513–519.

    Article  PubMed  CAS  Google Scholar 

  33. Kumar R, Gordia TM, Barnes AC et al. (1999) Performance of robotic augmentation in microsurgeryscale motions. ln: Taylor C, Colchester A (eds) Proceedings of Second International Symposium on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’99), Cambridge, England, September 1999. Lecture Notes in Computer Science 1679. Springer, Berlin Heidelberg New York Tokyo, pp 1108–1115.

    Google Scholar 

  34. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 5:153–160.

    Article  Google Scholar 

  35. Lavallée S (1989) A new system for computer assisted neurosurgery. Proceedings of the Eleventh IEEE Engineering in Medicine and Biology Conference, pp 926–927.

    Google Scholar 

  36. Lueth TC, Hein A, Albrecht J et al. (1998) A surgical robotic system for maxillofacial surgery. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (IECON), pp 2470–2475.

    Google Scholar 

  37. Mächler H, Bergmann P, Mächler E, Anelli-Monti M, Rigler B (2001) Forensische Aspekte eines Anfängers in der Roboterchirurgie am Herzen; Kongressband d.Jahres Dt.Ges.F.Chirurgie 2001, S 689–691.

    Google Scholar 

  38. Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K (1995) Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1:242–248.

    Article  PubMed  CAS  Google Scholar 

  39. Masamune K, Fichtinger G, Patriciu A et al. (2001) System for robotically assisted percutaneous procedures with computed tomography guidance. Comp Aid Surg 6:370–383.

    Article  CAS  Google Scholar 

  40. Mai S, Lörke C, Siebert W (2000) Implantation von Knieendoprothesen mit dem neuen Operationsroboter-System CASPAR. Orthopädische Praxis 36:792–800.

    Google Scholar 

  41. Olk A, Franck WM, Hennig FF (2001) Stand und Perspektiven der Robotronik in der Unfall- und Wiederherstellungschirurgie. Trauma Berufskrankh 2 [Suppl]: 286–291.

    Article  Google Scholar 

  42. Okoniewski M, Birke A, Schietsch U, Thoma M, Hein W (2000) Frühergebnisse einer prospektiven Studie bei Patienten mit computergestützter Femurschaftpräparation bei Hüft-TEP-lmplantationen (System ROBODOC) - Indikation, Ergebnisse, Komplikationen. Z Orthop 138:510–514.

    Article  PubMed  CAS  Google Scholar 

  43. Petermann H, Kober, R. Heinze P (2000) Computer assisted planning and robot-assisted surgery in anterior cruciate ligament reconstruction. Operat Tech Orthoped 10:50.

    Article  Google Scholar 

  44. Stoianovici D (2001) URobotics — urology robotics at Johns Hopkins. Comp Aid Surg 6:360–369.

    CAS  Google Scholar 

  45. Tak Sung G, Gill IS (2001) Robotic laparoscopic surgery: A Comparison of the da VINCI and ZEUS systems. Urology 58:893–898.

    Article  Google Scholar 

  46. Taylor RH (1997) Robots as surgical assistants: where we are, whither we are tending, and how to get there. Proceedings of the 6th Conference on Artificial Intelligence in Medicine Europe (AIME 97). Grenoble, France, pp 3–11.

    Google Scholar 

  47. Taylor RH, Mittelstadt BD, Paul HA et al. (1994) An image-directed robotic system for precise orthopaedic surgery. lEEETrans Robotics Automat 10:261–273.

    Article  Google Scholar 

  48. Taylor RH, Jenson P, Whitcomb L (1999) A steady-hand robotic system for microsurgical augmentation. Int J Roboties Res 18:1201–1210.

    Article  Google Scholar 

  49. Troccaz J, Delnondedieu Y (1996) Robots in Surgery. IARP Workshop on Medical Robots, Vienna, Austria.

    Google Scholar 

  50. Wiesel U, Boerner M (2001) First experiences using a surgical robot for total knee replacement. Proc. CAOS/USA, Pittsburgh, USA 6–8 July 2001, pp 143–146.

    Google Scholar 

  51. Yamauchi Y, Dohi T etal. (1993) A needle insertion manipulator for X-ray CT image-guided neurosurgery. Proc LST5:814–821.

    Google Scholar 

  52. Yanof J, Haaga J, Klahr P, Bauer C, Nakamoto D, Chaturvedi A, Bruce R (2001) CT integrated robot for interventional procedures: preliminary experiment and computer-human interfaces. Comp Aid Surg 6:352–359.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Börner, M., Ditzen, W. (2004). Status Quo and Options in Medical Robotics. In: Navigation and Robotics in Total Joint and Spine Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59290-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59290-4_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63922-7

  • Online ISBN: 978-3-642-59290-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics