Skip to main content

On the Reconstruction of Paleosalinities

  • Chapter
Use of Proxies in Paleoceanography

Abstract

Methods potentially useful for paleosalinity reconstructions are summarized and applied to surface sediments and two cores from the Atlantic. The first approach is based on the oxygen isotope ratio in calcite tests of planktonic foraminifera in conjunction with an independent sea-surface temperature estimate. A two-step procedure from foraminiferal δ18O to the isotopic composition of sea-water and from there to an estimate of paleosalinity is proposed. The quality of the estimation of δ18O for sea-water depends heavily on the reliability of the independent temperature method. The final salinities are obtained through an assumed δ18O-salinity relationship for sea-water. Propagation of errors yields large deviations, especially in the tropics where slopes of the δ18O-salinity relationship are low. An uncertainty in temperature of ±1°C leads to errors in the salinity reconstruction of ±0.5 to ± 1.2 %o. Downcore application at a site in the western equatorial Atlantic indicates salinity increases of roughly 2.5 %o in the glacials, but also demonstrates sensitivity of the results to the temperature estimates and the δ18O-salinity relationship. Two additional methods of paleosalinity estimation were investigated both of which employ foraminiferal abundance data. An Artificial Neural Network was used for the first time to reconstruct paleosalinities. The obtained results were then compared to results from a Modern Analog Technique. Application to surface sediments yields comparable results for both methods, with standard deviations between 0.49 and 0.63 %o. Salinity calculations performed on downcore data in the tropical and subtropical South Atlantic indicate that the results are controlled by today’s temperature-salinity relationship. This leads to the conclusion that paleosalinity reconstructions from species composition of foraminiferal assemblages are unrealistic, because of a predominant response of the fauna to temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barnett TP, Hasselmann K (1979) Techniques of linear prediction with application to oceanic and atmospheric fields in the tropical Pacific. Revs Geophys Space Phys 17: 949–968

    Article  Google Scholar 

  • Berger WH, Gardner JV (1975) On the determination of Pleistocene temperatures from planktonic foraminifera. J Foram Res 5:102–113

    Article  Google Scholar 

  • Berger WH (1981) Paleoceanography: the deep-sea record. In: Emiliani C (ed) The Sea, Vol. 7. Wiley-Interscience, New York, pp 1437–1519

    Google Scholar 

  • Bijma J, Faber WW, Hemleben C (1990) Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J Foram Res 20:95–116

    Article  Google Scholar 

  • Brassell SC, Eglington G, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  Google Scholar 

  • Broecker WS (1986) Oxygen isotope constraints on surface ocean temperatures. Quat Res 26:2–14

    Article  Google Scholar 

  • Broecker WS (1989) The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography 4:207–212

    Article  Google Scholar 

  • Broecker WS, Denton GH (1989) The role of ocean-atmosphere reorganisations in glacial cycles. Geochim Cosmochim Acta 53:2465–2501

    Article  Google Scholar 

  • Broecker WS (1990) Salinity history of the Northern Atlantic during the last deglaciation. Paleoceanography 5:459–467

    Article  Google Scholar 

  • Charles CD, Fairbanks RG (1990) Glacial to interglacial changes in the isotopic gradients of southern ocean surface waters. In: Bleil U, Thiede J (eds) Geological History of the Polar Oceans: Arctic versus Antarctic. Kluwer Academic, Dordrecht, pp 519–538

    Chapter  Google Scholar 

  • Clapperton CM (1993) Nature of environmental changes in South America at the last glacial maximum. Paleogeogr Paleoclimatol Paleoecol 101:189–208

    Article  Google Scholar 

  • CLIMAP Project Members (1976) The Surface of the Ice-Age Earth. Science 191: 1131–1137

    Article  Google Scholar 

  • CLIMAP Project Members (1981) Seasonal reconstructions of the Earth’s surface at the last glacial maximum. GSA Map and Chart Ser MC-36:1–18

    Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanic studies and paleo temperatures. Spoleto, Consiglio Naz Delle Ricerche, Laboratorio di Geol Nuc, Pisa, pp 9–130

    Google Scholar 

  • Cullen JL (1981) Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 35:315–356

    Article  Google Scholar 

  • Curry WB, Thunell RC, Honjo S (1983) Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama basin sediment traps. Earth Planet Sci Lett 64:33–43

    Article  Google Scholar 

  • Deuser WG, Ross EH (1989) Seasonally abundant planktonic foraminifera of the Sargasso Sea: Succession, deep-water fluxes, isotopic compositions and paleoceanographic implications. J Foram Res 19: 268–293

    Article  Google Scholar 

  • Deuser WG, Ross EH, Hemleben C, Spindler M (1981) Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea. Palaeogeogr Palaeoclimatol Palaeoecol 33:103–127

    Article  Google Scholar 

  • Duplessy JC (1981) Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science 213:1247–1250

    Article  Google Scholar 

  • Duplessy JC (1982) Glacial to interglacial contrasts in the northern Indian Ocean. Nature 295:494–498

    Article  Google Scholar 

  • Duplessy JC, Labeyrie L, Juillet-Leclerc A, Maitre F, Duprat J, Sarnthein M (1991) Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanol Acta 14:311–324

    Google Scholar 

  • Duplessy JC, Labeyrie L, Arnold M, Paterne M, Duprat J, van Weering TCE (1992) Changes in surface salinity of the North Atlantic Ocean during the last deglaciation. Nature 358:485–488

    Article  Google Scholar 

  • Duplessy JC, Labeyrie L, Paterne M, Hovine S, Fichefet T, Duprat J, Labracherie M (1996) High Latitude Water Sources During the Last Glacial Maximum and the Intensity of the Global Oceanic Circulation. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 445–460

    Chapter  Google Scholar 

  • Durazzi JT (1981) Stable-isotope studies of planktonic foraminifera in North Atlantic core-tops. Palaeogeogr Palaeoclimatol Palaeoecol 33:157–172

    Article  Google Scholar 

  • Dürkoop A, Hale W, Mulitza S, Pätzold J, Wefer G (1997) Late Quaternary variations of sea surface salinity and temperature in the western tropical Atlantic: Evidence from δ18O of Globigerinoides sacculifer. Paleoceanography 12:764–772

    Article  Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures. J Geol 63: 538–578

    Article  Google Scholar 

  • Emiliani C (1971) Depth habitats of growth stages of pelagic foraminifera. Science 173:1122–1124

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O-18 content of waters from natural sources. Geochim Cosmochim Acta 4: 213–224

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Bull Geol Soc Amer 64:1315–1325

    Article  Google Scholar 

  • Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031

    Article  Google Scholar 

  • Fairbanks RG, Charles CD, Wright JD (1992) Origin of global meltwater pulses. In: Taylor RE (ed) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 473–500

    Chapter  Google Scholar 

  • Ferronsky VI, Brezgunov VS (1989) Stable isotopes and ocean dynamics. In: Fritz P, Fontes JC (eds) The marine environment. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Fillon RH, Williams DF (1984) Dynamics of meltwater discharge from Northern hemisphere ice sheets during the last deglaciation. Nature 310:674–677

    Article  Google Scholar 

  • GEOSECS Executive Committee (1987) GEOSECS Atlantic, Pacific, and Indian Ocean Expeditions, Shorebased Data and Graphics. In: Ostlund HG, Craig H, Broecker WS, Spencer D (eds) International decade of ocean exploration. National Science Foundation, Washington DC, pp 1–200

    Google Scholar 

  • Giraudeau J (1992) Coccolith Paleotemperature and Paleosalinity estimates in the Caribbean Sea for the middle-late Pleistocene (DSDP Leg 68 — Hole 502B). Memorie di Scienze Geologiche 43:375–387

    Google Scholar 

  • Grobe H, Mackensen A, Hubberten H-W, Spiess V, Futterer DK (1990) Stable isotope record and late Quaternary sedimentation rates at the Antarctic continental margin. In: Bleil U, Thiede J (eds) Geological History of the Polar Oceans: Arctic versus Antarctic. Kluwer Academic, Dordrecht, pp 539–572

    Chapter  Google Scholar 

  • Hecht AD, Savin SM (1972) Phenotypic variation and oxygen isotope ratios in recent planktonic foraminifera. J Foram Res 2:55–67

    Article  Google Scholar 

  • Hoffmann G (1995) Stabile Wasserisotope im allgemeinen Zirkulationsmodell ECHAM. Max-Planck-Institut fur Meteorologie, Examensarbeit 27, pp 1–96

    Google Scholar 

  • Hut G (1987) Stable isotope reference samples for geochemical and hydrological investigations. Consultant Group Meeting IAEA, Report to the Director General, Vienna, pp 1–42

    Google Scholar 

  • Hutson WH (1980) The Agulhas Current during the late Pleistocene: Analysis of Modern Faunal Analogs. Science 207:64–66

    Article  Google Scholar 

  • Hutson WH, Prell WL (1980) A paleoecological transfer function, FI-2, for Indian Ocean planktonic foraminifera. J Paleontol 54:381–399

    Google Scholar 

  • Imbrie J, Kipp NG (1971) A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core. In: Turekian KK (ed) Late Cenocoic glacial ages. Yale University Press, New Haven, pp 71–181

    Google Scholar 

  • Imbrie J, van Donk J, Kipp NG (1973) Paleoclimatic investigation of a late Pleistocene Caribean deep-sea core: Comparison of isotopic and faunal methods. Quat Res 3:10–38

    Article  Google Scholar 

  • Imbrie J, Mclntyre A, Mix A (1989) Oceanic response to orbital forcing in the late Quaternary: Observational and experimental strategies. In: Berger A (ed) Climate and Geo-Sciences. Kluwer Academic, Dordrecht, pp 121–164

    Chapter  Google Scholar 

  • Jouzel J, Koster RD, Suozzo RJ, Russell GL (1994) Stable water isotope behaviour during the last glacial maximum: A general circulation model analysis. J Geophy Res 99:25791–25801

    Article  Google Scholar 

  • Kallel N, Paterne M, Labeyrie L, Duplessy J, Arnold M (1997) Temperature and salinity records of the Tyrrhenian Sea during the last 18,000 years. PalaeogeogrPalaeoclimatolPalaeoecol 135:97–108

    Article  Google Scholar 

  • Keigwin LD (1996) The Little Ice Age and Medieval Warm period in the Sargasso Sea. Science 274: 1504–1508

    Article  Google Scholar 

  • Kipp NG (1976) New transfer function for estimating past sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic. In: Cline RM, Hays JD (eds) Investigation of late Quaternary Paleoceanography and Paleoclimatology. Geol Soc Amer Mem, pp 3–41

    Google Scholar 

  • Labeyrie LD, Duplessy JC, Blanc PL (1987) Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327: 477–482

    Article  Google Scholar 

  • Lautenschlager M, Mikolajewicz U, Maier-Reimer E, Heinze C (1992) Application of ocean models for the interpretation of AGCM experiments on the climate of the last glacial maximum. Paleoceanography 7: 769–782

    Article  Google Scholar 

  • Le J (1993) Paleotemperature estimation methods: Sensitivity test on two western equatorial Pacific cores. Quat Sci Rev 11:801–820

    Article  Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean. NOAA Professional Paper 13:1–173

    Google Scholar 

  • Levitus S, Boyer TP (1994) World Ocean Atlas 1994, Volume 4: Temperature, pp 1–117

    Google Scholar 

  • Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas 1994, Volume 3: Salinity, pp 1–99

    Google Scholar 

  • Lorenz S, Grieger B, Helbig P, Herterich K (1996) Investigating the sensitivity of the Atmospheric General Circulation Model ECHAM 3 to paleoclimatic boundary conditions. Geol Rundsch 85:513–524

    Article  Google Scholar 

  • Maslin MA, Shackleton NJ, Pflaumann U (1995) Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds. Paleoceanography 10:527–544

    Article  Google Scholar 

  • Melles M (1991) Paläozeanographie im Spätquartär am Kontinentalrand des südlichen Weddellmeeres, Antarktis. Ber Polarforsch Bremerhaven 81, pp 1–190

    Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J Geophys Res 84:5029–5033

    Article  Google Scholar 

  • Mix AC (1987) The oxygen-isotope record of glaciation. In: Ruddiman WF, Wright HEJ (eds) North America and adjacent oceans during the last deglaciation. Geol Soc Amer, Boulder, Colorado, pp 111–135

    Google Scholar 

  • Mix AC, Ruddiman WF (1985) Structure and timing of the last deglaciation: Oxygen isotope evidence. Quat Sci Rev 4:59–108

    Article  Google Scholar 

  • Mulitza S (1994) Spätquartäre Variationen der oberflächennahen Hydrographie im westlichen äquatorialen Atlantik. Ber Fachber Geowiss Univ Bremen 57, pp 1–97

    Google Scholar 

  • Mulitza S, Wolff T, Pätzold J, Hale W, Wefer G (1998) Temperature sensitivity of planktonic foraminifera and its influence on the oxygen isotope record. Mar Micropaleontol 33:223–240

    Article  Google Scholar 

  • Müller PJ, Schneider R, Ruhland G (1994) Late Quaternary PCO2 variations in the Angola Current: Evidence from organic carbon δ13C and alkenone temperatures. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change. NATO ASI Series, Vol 17, Springer, Berlin Heidelberg New York, pp 343–366

    Chapter  Google Scholar 

  • Naidu PD (1993) Distribution patterns of recent planktonic foraminifera in surface sediments of the western continental margin of India. Mar Geol 110: 403–418

    Article  Google Scholar 

  • Niebler HS (1995) Reconstruction of palaeo-environmental parameters using stable isotopes and faunal assemblages of planktonic foraminifera in the South Atlantic Ocean. Ber Polarforsch Bremerhaven 167, pp 1–198

    Google Scholar 

  • Overpeck JT, Webb III T, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108

    Article  Google Scholar 

  • Pflaumann U (1985) Transfer function ‘134/6’ — a new approach to estimate sea-surface temperatures and salinities of the eastern North Atlantic from the planktonic foraminifers in the sediments. “Meteor”Forsch Ergeb C 39:37–71

    Google Scholar 

  • Pflaumann U, Duprat J, Pujol C, Labeyrie LD (1996) SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11:15–35

    Article  Google Scholar 

  • Pierre C, Vergnaud-Grazzini C, Faugeres JC (1991) Oxygen and carbon stable isotope tracers of the water masses in the Central Brazil Basin. Deep-Sea Res 38: 597–606

    Article  Google Scholar 

  • Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330:367–369

    Article  Google Scholar 

  • Prahl FG, Pisias N, Sparrow MA, Sabin A (1995) Assessment of sea-surface temperature at 42 °N in the California Current over the last 30,000 years. Paleoceanography 10:763–773

    Article  Google Scholar 

  • Prell WL (1985) The stability of low-latitude sea surface temperatures: An evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. Dept of Energy, Washington DC, pp 1–60

    Google Scholar 

  • Rosell-Melé A, Egington G, Pflaumann U, Sarnthein M (1995) Atlantic core-top calibration of the Uk’37 index as a sea-surface paleotemperature indicator. Geochim Cosmochim Acta 59:3099–3107

    Article  Google Scholar 

  • Rostek F, Ruhland G, Bassinot FC, Müller PJ, Labeyrie LD, Lancelot Y, Bard E (1993) Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature 364:319–321

    Article  Google Scholar 

  • Rumelhart DG, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  • Savin SM, Douglas RG (1973) Stable isotope and magnesium geochemistry of recent planktonic foraminifera from the South Pacific. Geol Soc Amer Bull 84:2327–2342

    Article  Google Scholar 

  • Schneider RR, Muller PJ, Ruhland G (1995) Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from alkenone sea surface temperatures. Paleoceanography 10:197–219

    Article  Google Scholar 

  • Schulz HD und Fahrtteilnehmer (1991) Bericht und Ergebnisse der Meteor-Fahrt Ml6/2, Recife — Belem (28.04-21.05.1991). Ber Fachber Geowiss Univ Bremen 19, pp 1–149

    Google Scholar 

  • Showers WJ, Margolis SV (1985) Evidence for a tropical freshwater spike during the last glacial/interglacial transition in the Venezuela Basin: δ18O and δ13C of calcareous plankton. Mar Geol 68:145–165

    Article  Google Scholar 

  • Sikes EL, Keigwin LD (1996) A reexamination of the Northeast Atlantic sea surface temperature and salinity over the last 16 kyr. Paleoceanography 11: 327–342

    Article  Google Scholar 

  • Sikes EL, Volkman JK (1993) Calibration of alkenone unsaturation ratios (Uk’37) for paleotemperature estimation in cold polar waters. Geochim Cosmochim Acta 57:1883–1889

    Article  Google Scholar 

  • Spero HJ, Williams DF (1990) Evidence for seasonal lowsalinity surface waters in the Gulf of Mexico over the last 16,000 years. Paleoceanography 5: 963–975

    Article  Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of sea-water carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Article  Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans: their physics, chemistry and general biology. Prentice-Hall, Englewood Cliffs, pp 1–1087

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc: 562–581

    Google Scholar 

  • Van Campo E, Duplessy JC, Prell WL, Barratt N, Sabatier R (1990) Comparison of terrestrial and marine temperature estimates for the past 135 kyr off southeast Africa: a test for GCM simulations of paleoclimate. Nature 348:209–212

    Article  Google Scholar 

  • Vetshteyn VY, Malyuk GA, Rusanov VP (1974) Oxygen-18 distribution in the central arctic basin. Oceanology 14:514–519

    Google Scholar 

  • Vincent E, Berger WH (1981) Planktonic foraminifera and their use in paleoceanography. In: Emiliani C (ed) The Sea. Wiley-Interscience, New York, pp 1025–1119

    Google Scholar 

  • Vincent E, Shackleton NJ (1980) Agulhas Current temperature distribution delineated by oxygen isotope analysis of foraminifera in surface sediments. Cushman Foundation Special Publication 19: 89–95

    Google Scholar 

  • Vogelsang E (1990) Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoffund Sauerstoffisotope. Ber Sonderforschungs-bereich 313 Univ Kie 123, pp 1–136

    Google Scholar 

  • Wang L, Sarnthein M, Duplessy JC, Erlenkeuser H, Jung S, Pflaumann U (1995) Paleo sea surface salinities in the low-latitude Atlantic: The δ18O record of Globigerinoides ruber (white). Paleoceanography 10:749–761

    Article  Google Scholar 

  • Washington WM, Parkinson CL (1986) An Introduction to Three-Dimensional Climate Modelling. University Science Books, Mill Valley, pp 1–422

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Wefer G, Berger WH, Bickert T, Donner B, Fischer G, Kemle-von Mücke S, Meinecke G, Muller PJ, Mulitza S, Niebler HS, Pätzold J, Schmidt H, Schneider RR, Segl M (1996) Late Quaternary Surface Circulation of the South Atlantic: The Stable Isotope Record and Implications for Heat Transport and Productivity. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 461–502

    Chapter  Google Scholar 

  • Widrow B, Lehr MA (1990) 30 years of adaptive neural networks: Perception, madaline, and back-propagation. Proc IEEE 78:1415–1441

    Article  Google Scholar 

  • Williams DF, Healy-Williams N (1980) Oxygen isotopic-hydrographic relationships among recent planktonic foraminifera from the Indian ocean. Nature 283: 848–852

    Article  Google Scholar 

  • Williams DF, Bé AWH, Fairbanks RG (1979) Seasonal oxygen isotopic variations in living planktonic foraminifera off Bermuda. Science 206:447–449

    Article  Google Scholar 

  • Wolff T, Mulitza S, Arz H, Pätzold J, Wefer G (1998) Oxygen isotopes versus CLIMAP (18 ka) temperatures: A comparison from the tropical Atlantic. Geology 26: 675–678

    Article  Google Scholar 

  • Wu G, Berger WH (1989) Planktonic foraminifera: Differential dissolution and the Quaternary stable isotope record in the west equatorial Pacific. Paleoceanography 4:181–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolff, T. et al. (1999). On the Reconstruction of Paleosalinities. In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics