Skip to main content

Stable Isotopes of Pteropod Shells as Recorders of Sub-Surface Water Conditions: Comparison to the Record of G. ruber and to Measured Values

  • Chapter
Use of Proxies in Paleoceanography

Abstract

We compared a four-year long oxygen and carbon isotope record of the pteropod Limacina inflata (juveniles) with a record derived from Globigerinoides ruber (white variety) sampled with time-series sedimenttraps off Cape Blanc (Mauretania). Both oxygen isotope records provide seasonal patterns of water temperatures which generally correspond to measured variations of surface water temperatures. Surprisingly, adult specimens of L. inflata collected during 1989 also showed a seasonal oxygen isotope pattern, suggesting rapid shell growth and relatively short lifespans of this species. Due to its different life and carbonate precipitation habitat, G. ruber generally produces higher water temperatures (applying -0.35%o as vital effect) than L. inflata (precipitation depth around 50 m). Absolute temperatures derived from G. ruber at times exceeded the measured SSTs when applying a vital effect of -0.35%o. All temperature curves show changing seasonality from year-to-year: seasonality in temperature was highest in 1989 and lowest in 1991. During 1991, calculated temperatures remain generally low and the reconstructed temperature curves of G. ruber and L. inflata converge, suggesting stronger and deeper mixing of water masses. The seasonal δ13C patterns of juvenile L. inflata and G. ruber differ largely, the former species revealing higher values of up to 1.5%o. Unlike G. ruber, L. inflata shows a negative temperature dependency of δ13C of 0.08%o per 1°C. The temperature-corrected δ13C record of L. inflata corresponds better (compared to G. ruber) to seasonal variations in carbon flux which in turn largely determines the δ13C of ∑CO2 in water masses near the surface. Furthermore, the corrected δ13C values of this pteropod correspond better to measured δ13C ∑CO2 values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Almogi-Labin A (1982) Stratigraphic and paleoceano-graphic significance of Late Quaternary pteropods from deep-sea cores in the Gulf of Aquaba (Elat) and northernmost Red Sea. Mar Micropaleontol 7:53–72

    Article  Google Scholar 

  • Almogi-Labin A, Hemleben Ch, Deuser WG (1988) Seasonal variation in the flux of euthecosomatous pteropods collected in a deep sediment trap in the Sargasso Sea. Deep-Sea Res 35: 441–464

    Article  Google Scholar 

  • Almogi-Labin A, Hemleben C, Meischner D, Erlenkeuser H (1991) Paleoenvironmental events during the last 13,000 years in the central Red Sea as recorded by pteropoda. Paleoceanography 6: 83–98

    Article  Google Scholar 

  • Bathmann U, Noji TT, Bodungen B von (1991) Sedimentation of pteropods in the Norwegian Sea in autumn. Deep-Sea Res 38:1341–1360

    Article  Google Scholar 

  • Bé AWH, Gilmer RW (1977) A zoogeographic and taxonomic review of euthecosomatous Pteropoda. In: Ramsey ATS (ed) Oceanic Micropaleontology. Academic, San Diego California, pp 733–807

    Google Scholar 

  • Berger WH, Vincent E (1986) Deep-sea carbonates: Reading the carbon isotope signal. Geol Rundsch 75: 249–270

    Article  Google Scholar 

  • Bijma J, Faber Jr WW, Hemleben C (1990) Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J Foram Res 20: 95–116

    Article  Google Scholar 

  • Camp L van, Nykjaer L, Mittelstaedt E, Schlittenhardt P (1991) Upwelling and boundary circulation off Northwest Africa as depicted by infrared and visible satellite observations. Progr Oceangr 26:357–402

    Article  Google Scholar 

  • Deuser WG (1987) Seasonal variations in isotopic composition and deep-water fluxes of the test of perennially abundant planktonic foraminifera of the Sargasso Sea: results from sediment trap collections and their paleoceanographic significance. J Foram Res 17:14–27

    Article  Google Scholar 

  • Deuser WG, Ross EH (1989) Seasonally abundant planktonic foraminifera of the Sargasso Sea: succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. J Foram Res 19: 268–293

    Article  Google Scholar 

  • Deuser WG, Ross EH, Hemleben C, Spindler M (1981) Seasonal changes in species composition, numbers, mass, size and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea. Paleogeogr Paleoclimatol Paleoecol 33:103–127

    Article  Google Scholar 

  • Epstein S, Buchsbau R, Lowenstam H, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Amer Bull 64:1315–1326

    Article  Google Scholar 

  • Fabry VJ, Deuser WG (1992) Seasonal changes in the isotopic compositions and sinking fluxes of euthecosomatous pteropod shells in the Sargasso Sea. Paleoceanography 7:195–213

    Article  Google Scholar 

  • Fairbanks RG, Wiebe PH, Bé AWH (1980) Vertical distribution and isotopic composition of planktonic foraminifera in the western North Atlantic. Science 207:61–63

    Article  Google Scholar 

  • Fairbanks RG, Sverdlove M, Free R, Wiebe PH, Bé AWH (1982) Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298:841–844

    Article  Google Scholar 

  • Fairbanks RG, Charles CD, Wright JD (1992) Origin of global meltwater pulses. In: Taylor RE (ed) Radiocarbon after 4 decades. Springer, Berlin Heidelberg New York, pp 473–500

    Chapter  Google Scholar 

  • Fischer G, Donner B, Ratmeyer V, Davenport R, Wefer G (1996) Distinct year-to-year particle flux variations off Cape Blanc during 1988–;1991: relation to δ18O-deduced sea-surface temperatures and trade winds. JMarRes 54:73–98

    Google Scholar 

  • Ganssen G (1983) Dokumentation von Küstenauftrieb anhand stabiler Isotope in rezenten Foraminiferen vor Nordwest-Afrika. “Meteor”Forsch Ergebn C 37: 146

    Google Scholar 

  • Ganssen G, Sarnthein M (1983) Stable isotope compositions of foraminifers: the surface and bottom water record of coastal upwelling. In: Suess E, Thiede J (eds) Coastal Upwelling: Its Sediment Record, Part A: Responses of the sedimentary regime to present coastal upwelling. Plenum Press, London New York, pp 99–121

    Google Scholar 

  • Ganssen G, Troelstra SR, Borg K van der, De Jong AMF (1991) Late Quaternary pteropod preservation in eastern North Atlantic sediments in relation to changing climate. Radiocarbon 33:277–282

    Google Scholar 

  • Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol (Isot Geosci Sect) 59: 59–74

    Article  Google Scholar 

  • Grossman EL, Betzer PR, Dudely WC, Dunbar RB (1986) Stable isotopic variation in pteropods and Atlantids from North Pacific sediment traps. Mar Micropaleontol 10:9–22

    Article  Google Scholar 

  • Hemleben C, Meischner D, Zahn R, Almogi-Labin A, Erlenkeuser H, Hiller B (1996) Three hundred eighty thousand year long isotope and faunal records from the Red Sea: Influence of global sea level change on hydrography. Paleoceanography 11:147–156

    Article  Google Scholar 

  • Herman Y (1978) Pteropods. In: Haq B, Boersma A (eds) Introduction to marine micropaleontology. Elsevier, New York, pp 151–160

    Google Scholar 

  • Hoefs J, Sarnthein M (1971) 18O/16O ratios and related temperatures of recent pteropod shells (Cavolinia longirostris Lesueur) from the Persian Gulf. Mar Geol 10:M11–M16

    Article  Google Scholar 

  • Jasper JP, Deuser WG (1993) Annual cycles of mass flux and isotopic composition of pteropod shells settling into the deep Sargasso Sea. Deep-Sea Res 40: 653–669

    Article  Google Scholar 

  • Kalberer M, Fischer G, Pätzold J, Donner B, Segl M, Wefer G (1993) Seasonal sedimentation and stable isotope records of pteropods off Cape Blanc. Mar Geol 113:305–320

    Article  Google Scholar 

  • Kemle-von Mücke S (1994) Oberflächenwasserstruktur und-zirkulation des Südostatlantiks im Spätquartär. Ber Fachber Geowiss Univ Bremen 55, pp 1–151

    Google Scholar 

  • Kroopnick PM (1985) The distribution of 13C in the world oceans. Deep-Sea Res 32: 57–77

    Article  Google Scholar 

  • Levitus S, Boyer T (1994) World Ocean Atlas 1994, Volume 4: Temperature. NOAA Atlas NESDIS 4, US Dept of Commerce, Washington DC

    Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res 34:267–285

    Article  Google Scholar 

  • Meinecke G, Wefer G (1990) Seasonal pteropod sedimentation in the Norwegian Sea. Palaeogeogr Palaeoclimatol Palaeoecol 79:129–147

    Article  Google Scholar 

  • Mittelsteadt E (1991) The ocean boundary along the northwest African coast. Progr Oceanogr 26:307–355

    Article  Google Scholar 

  • Mook WG, Vogel JC (1968) Isotopic equilibrium between shells and their environment. Science 159: 874–875

    Article  Google Scholar 

  • Price BA, Killingley JS, Berger WH (1985) On the pteropod pavement of the eastern Rio Grande Rise. Mar Geol 64:217–235

    Article  Google Scholar 

  • Ravelo AC, Fairbanks RG (1992) Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient. Paleoceanography 7:815–831

    Article  Google Scholar 

  • Ravelo AC, Fairbanks RG (1995) Carbon isotope fractionation in multiple species of planktonic foraminifera from core-tops in the Tropical Atlantic. J Foram Res 25:53–74

    Article  Google Scholar 

  • Reynolds RW (1988) A real-time global sea surface temperature analysis. J Climate 1:75–86

    Article  Google Scholar 

  • Sarnthein M, Thiede J, Pflaumann U, Erlenkeuser H, Fütterer D, Koopmann B, Lange H, Seibold E (1982) Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years. In: Rad U von, Hinz K, Sarnthein M, Seibold E (eds) Geology of the Northwest African Continental Margin. Springer, Berlin Heidelberg New York, pp 584–604

    Google Scholar 

  • Schemainda R, Nehring D, Schulz S (1975) Ozeanologische Untersuchungen zum Produktions-potential der nordwestafrikanischen Wasser-auftriebsregion 1970–1973. Geodätische und geophysikalische Veröffentlichungen 4:1–88

    Google Scholar 

  • Spero HJ, Lea DW (1993) Intraspecific stable isotope variability in the planktonic foraminifera Globigerinoides sacculifer: results from laboratory experiments. MarMicropaleontol 22:221–234

    Article  Google Scholar 

  • Spero HJ, Williams DF (1988) Extracting environmental information from planktonic foraminiferal δ13C data. Nature 335:717–719

    Article  Google Scholar 

  • Spoel S van der (1967) Euthecosomata: a group with remarkable developmental stages (Gastropoda, Pteropoda). Gorinchem J Noorduijn en Zoon NV, pp 1–375

    Google Scholar 

  • Spoel S van der (1973) Growth, reproduction and vertical migration in Cliopyramidata Linne, 1767 forma lanceolata (Lesueur, 1813), with notes on other Cavoliniidae (Mollusca, Pteropoda). Beaufortia 21 (281): 117–134

    Google Scholar 

  • Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33: 987–996

    Article  Google Scholar 

  • Wells FE (1976) Growth rate of four species of euthecosomatous pteropods occurring off Barbados, West Indies. The Nautilus 90:114–116

    Google Scholar 

  • Wormuth JH (1981) Vertical distribution and diel migrations of Euthecosomata in the northwest Sargasso Sea. Deep-Sea Res 28A: 1493–1515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, G., Kalberer, M., Donner, B., Wefer, G. (1999). Stable Isotopes of Pteropod Shells as Recorders of Sub-Surface Water Conditions: Comparison to the Record of G. ruber and to Measured Values. In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics