Skip to main content

The South Atlantic Carbon Isotope Record of Planktic Foraminifera

  • Chapter
Use of Proxies in Paleoceanography

Abstract

We reviewed the paleoceanographic application of the carbon isotope composition of planktic foraminifera. Major controls on the distribution of δ13C of dissolved CO213C∑CO2) in the modern ocean are photosynthesis-respiration cycle, isotopic fractionation during air-sea exchange, and circulation. The carbon isotope composition of surface waters is not recorded without perturbations by planktic foraminifera. Besides δ13C∑CO2 of the surrounding seawater, the δ13C composition of planktic foraminifera is affected by vital effects, the water depth of calcification and postdepositional dissolution. We compared several high-resolution (>10cm/ka) carbon isotope records from the Southern Ocean, the Benguela upwelling system, and the tropical Atlantic. In the Southern Ocean, carbon isotope values are about 1.2 %0 lower during the LGM and up to 1.7 %0 lower during the last deglaciation, when compared to the Holocene. These depletions might be explained with a combination of a subsurface nutrient enrichment and reduced air-sea exchange due to an increased stratification of surface waters. In the Benguela Upwelling system, waters originating in the south are upwelled. While the deglacial minimum is transferred and recorded in its full extent in the δ13C record of Globigerina bulloides, glacial values show only little changes. This might suggest, that the lower glacial δ13C values of high-latitude surface waters are not upwelled off Namibia, or that G. bulloides records post-upwelling conditions, when increased seasonal production has already increased surface-water δ13C. Synchronous to the δ13C depletions in high latitudes, low δ13C values were recorded in Globigerinoides sacculifer during the LGM and during the last deglaciation in the nutrient-depleted western equatorial Atlantic. Hence, part of the glacial-interglacial variability presumably transferred from high to low latitudes seems to be related to changes in thermodynamic fractionation. The variability in δ13C is lowest in the northernmost core M35003-4 from the eastern Caribbean, implying that the Antarctic Intermediate Water might have acted as a conduit to transfer the deglacial minimum to tropical surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arz H, Pätzold J, Wefer G (1998) Short-term climate fluctuations in the western tropical Atlantic for the past 85,000 years revealed by a sediment core off NE-Brazil. Quat Res 50:157–166

    Article  Google Scholar 

  • Bard E (1988) Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3:635–645

    Article  Google Scholar 

  • Bard E, Arnold M, Maurice P, Duplessy JC (1987) Measurements of bomb radiocarbon in the ocean by means of accelerator mass spectrometry: technical aspects. Nuc Inst Meth Phys Res B29:297–301

    Article  Google Scholar 

  • Bemis BE, Spero HJ (1997) The influence of temperature on the carbon isotopic composition of planktonic foraminiferal shell calcite. EOS 78:361

    Google Scholar 

  • Berger WH (1971) Sedimentation of planktonic foraminifera. Mar Geol 11:325–358

    Article  Google Scholar 

  • Berger WH, Killingley JS (1977) Glacial-Holocene transition in deep-sea carbonates: Selective dissolution and stable isotope signal. Science 197:563–566

    Article  Google Scholar 

  • Berger WH, Vincent E (1986) Deep-sea carbonates: reading the carbon-isotope signal. Geol Rundsch 75: 249–269

    Article  Google Scholar 

  • Bonneau MC, Vergnaud-Grazzini C, Berger WH (1980) Stable isotope fractionation and differential dissolution in recent planktonic foraminifera from Pacific box-cores. Oceanol Acta 3:377–382

    Google Scholar 

  • Boyle EA, Keigwin L (1987) North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperatures. Nature 330: 35–40

    Article  Google Scholar 

  • Boyle E, Rosenthal Y (1996) Chemical hydrography of the Southern Ocean during the last glacial maximum: Cd vs. δ13C. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 423–443

    Chapter  Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the Sea. Eldigio, Lamont-Doherty Geological Observatory, Palisades, pp 1–690

    Google Scholar 

  • Carstens J, Hebbeln D, Wefer G (1997) Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Mar Micropaleontol 29:257–269

    Article  Google Scholar 

  • Charles CD, Fairbanks RG (1990) Glacial to interglacial changes in the isotopic gradients of the Southern Ocean surface water. In: Bleil U, Thiede J (eds) Geological history of the Polar Oceans: Artie versus Antarctic. Kluwer, Dordrecht, pp 519–538

    Chapter  Google Scholar 

  • Charles CD, Wright JD, Fairbanks RG (1993) Thermodynamic influences on the marine carbon isotope record. Paleoceanography 8:691–697

    Article  Google Scholar 

  • Charles CD, Lynch-Stieglitz J, Ninnemann US, Fairbanks RG (1996) Climate connections between the hemispheres revealed by deep sea sediment core/ice core correlations. Earth Planet Sci Lett 142:19–27

    Article  Google Scholar 

  • Conkright ME, Boyer TP, Levitus S, 1994. Quality control and processing of historical oceanographic data. NOAA Technical Rep NESDIS. Washington DC, NOAA, ppl–75

    Google Scholar 

  • Coplen TB (1996) Editoral: More uncertainty than necessary. Paleoceanography 11:369–370

    Article  Google Scholar 

  • Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3: 53–92

    Article  Google Scholar 

  • Curry WB, Duplessy JC, Labeyrie LD, Shackleton NJ (1988) Changes in the distribution of δ13C of deep water ∑CO2 between the last glaciation and the Holocene. Paleoceanography 3:317–341

    Article  Google Scholar 

  • Duplessy JC (1972) La geochimie des isotopes stables du carbone dans la mer. Ph.D. dissertation, Centre d’Etudes Nucléaires de Saclay. Saclay, pp 1–196

    Google Scholar 

  • Duplessy JC (1981) Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science 213:1247–1250

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3: 343–360

    Article  Google Scholar 

  • Duplessy JC, Labeyrie L, Paterne M, Hovine S, Fichefet T, Duprat J, Labracherie M (1996) High Latitude Water Sources During the Last Glacial Maximum and the Intensity of the Global Oceanic Circulation. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 445–460

    Chapter  Google Scholar 

  • Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8: 363–371

    Article  Google Scholar 

  • Francois R, Altabet MA, Yu EF, Sigman DM, Bacon MP, Frank M, Bohrmann G, Bareille G, Labeyrie LD (1997) Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389:929–935

    Article  Google Scholar 

  • Frank M, Gersonde R, Rutgers van der Loeff M, Kuhn G, Mangini A (1996) Late Quaternary sediment dating and quantification of lateral sediment redistribution applying 230Thex: a study from the eastern Atlantic sector of the Southern Ocean. Geol Rundsch 85:554–566

    Article  Google Scholar 

  • Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the I3C/12C ratio of the atmospheric CO2 in the past centuries. Nature 324:273–238

    Article  Google Scholar 

  • Ganssen G (1983) Dokumentation von küstennahem Auftrieb anhand stabiler Isotope in rezenten Foraminiferen vor Nordwest-Afrika. “Meteor”ForschErgebn C37:l–46

    Google Scholar 

  • Gordon AL (1981) South Atlantic thermocline ventilation. Deep-Sea Res 28A: 1239–1264

    Article  Google Scholar 

  • Harkness DD (1979) Radiocarbon dates from Antarctica. British Antarctic Survey Bulletin 47:43–59

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the Ice Ages. Science 194: 1121–1132

    Article  Google Scholar 

  • Hemleben C, Spindler M, Breitinger M, Deuser W (1985) Field and laboratory studies on the ontogeny and ecology of some globorotaliid species from the Sagasso Sea of Bermuda. J Foram Res 15:254–272

    Article  Google Scholar 

  • Hoefs J (1987) Stable isotope geochemistry. Springer, Berlin Heidelberg New York, pp 1–241

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, Mclntyre A, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and Climate, Part I. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Kirst GJ, Schneider RR, Wefer G (1998) Late Quaternary temperature variability in the Benguela Current system derived from Alkenones. Quat Res, in press

    Google Scholar 

  • Kohfeld KE, Fairbanks RG, Smith SL, Walsh ID (1997) Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from Northeast Water Polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11:679–699

    Article  Google Scholar 

  • Kroon D, Ganssen G (1988) Northern Indian Ocean upwelling cells and the stable isotope composition of living planktic foraminifers. In: Brummer GJA, Kroon D (eds) Planktonic foraminifers as tracers of ocean-climate history. Free University Press, Amsterdam, pp 299–319

    Google Scholar 

  • Kroopnick PM (1985) The distribution of 13C of ∑CO2 in the world oceans. Deep-Sea Res 32: 57–84

    Article  Google Scholar 

  • Labeyrie LD, Duplessy JC (1985) Changes in the oceanic 13C/12C ratio during the last 140,000 Years: High-latitude surface water records. Palaeogeogr Palaeoclimatol Palaeoecol 50:217–240

    Google Scholar 

  • Lea DW (1995) A trace element perspective on the evolution of Antarctic Circumpolar Deep Water chemistry. Paleoceanography 10:733–747

    Article  Google Scholar 

  • Lohmann GP (1995) A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10:445–457

    Article  Google Scholar 

  • Lynch-Stieglitz J, Fairbanks RG, Charles CD (1994) Glacial-interglacial history of Antarctic Intermediate Water: Relative strengths of Antarctic versus Indian Ocean sources. Paleoceanography 9: 7–29

    Article  Google Scholar 

  • Lynch-Stieglitz J, Stocker TF, Broecker WS, Fairbanks RG (1995) The influence of air-sea exchange on the isotopic comosition of oceanic carbon: observations and modelling. Global Biogeochem Cycles 9:653–665

    Article  Google Scholar 

  • Mackensen A, Hubberten H-W, Bickert T, Fischer G, Fütterer DK (1993) The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the d13C of dissolved inorganic carbon in southern ocean deep water: implication for glacial ocean circulation models. Paleoceanography 8:587–610

    Article  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: Respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    Article  Google Scholar 

  • Michel E, Labeyrie LD, Duplessy J-C, Gorfti N (1995) Could deep Subantarctic convection feed the world deep basins during the last glacial maximum? Paleoceanography 10: 871–880

    Article  Google Scholar 

  • Molinelli EJ (1981) The Antarctic influence on Antarctic Intermediate Water. J Mar Res 39:267–293

    Google Scholar 

  • Mook WG, Boomerson JC, Staverman WH (1974)Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  Google Scholar 

  • Mulitza S, Dürkoop A, Hale W, Wefer G, Niebler HS (1997) Planktonic foraminifera as recorders of past surface-water stratification. Geology 25:335–338

    Article  Google Scholar 

  • Mulitza S, Ruhlemann C, Bickert T, Hale W, Patzold J, Wefer G (1998) Late Quaternary δ13C gradients and carbonate accumulation in the western equatorial Atlantic. Earth Planet Sci Lett 155:237–249

    Article  Google Scholar 

  • Niebler H-S (1995) Rekonstruktionen von Paläo-Umweltparametern anhand von stabilen Isotopen und Faunen-Vergesellschaftungen planktischer Foraminiferen im Südatlantik. Ber Polarforsch Bremerhaven 167, pp 1–198

    Google Scholar 

  • Ninnemann US, Charles CD (1997) Regional differences in Quaternary Subantarctic nutrient cycling: Link to intermediate and deep water ventilation. Paleoceanography 12: 560–567

    Article  Google Scholar 

  • Oppo DW, Fairbanks RG (1987) Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean. Earth Planet Sci Lett 86:1–15

    Article  Google Scholar 

  • Oppo DW, Fairbanks RG (1989) Carbon isotopic composition of tropical surface water during the past 22,000 years. Paleoceanography 4:333–351

    Article  Google Scholar 

  • Ortiz JD, Mix AC, Rugh W, Watkins JM, Collier RW (1996) Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria. Geochim Cosmochim Acta 60:4509–4523

    Article  Google Scholar 

  • Pastouret L, Chamley H, Delibrias G, Duplessy JC, Thiede J (1978) Late Quaternary climatic changes in western tropical Africa deduced from deep-sea sedi-mentation off the Niger delta. Oceanol Acta 1: 217–232

    Google Scholar 

  • Rau GH, Froelich PN, Takahashi T, Des Marais DJ (1991) Does sedimentary organic δ13C record variations in Quaternary ocean [CO2(aq)]? Paleoceanography 6: 335–347

    Article  Google Scholar 

  • Ravelo AC, Fairbanks RG (1995) Carbon isotopic fractionation in multiple species planktonic foraminifera from core-tops in the tropical Atlantic. J Foram Res 25:53–74

    Article  Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Article  Google Scholar 

  • Rühlemann C, Mulitza S, Muller PJ, Wefer G, Zahn R (in prep) Tropical Atlantic warming during conveyor slowdown

    Google Scholar 

  • Savin SM, Douglas RG (1973) Stable isotope and magnesium geochemistry of recent planktonic foraminifera from the South Pacific. Geol Soc Amer Bull 84:2327–2342

    Article  Google Scholar 

  • Schneider R, Dahmke A, Kölling A, Muller PJ, Schulz HD, Wefer G (1992) Strong deglacial minimum in the δ13C record from planktonic foraminifera in the Benguelaupwelling region: palaeoceanographic signal or early diagenetic imprint? In: Summerhayes CP, Prell WL, Emeis K-C (eds) Upwelling Systems: Evolution Since the Early Miocene. Geol Soc Spec Publ, pp 285–297

    Google Scholar 

  • Schneider RR, Müller PJ, Wefer G (1994) Late Quaternary paleoproductivity changes off the Congo deduced from stable carbon isotopes of planktonic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 110:255–274

    Article  Google Scholar 

  • Shackleton NJ (1977) Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In: Andersen NR, Malahoff A (eds) The Fate of Fossil Fuel CO2 in Oceans. Plenum Press, New York, pp 401–4

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1976) Oxygen-isotope and paleomagnetic stratigraphy of Pacific Core V28-239: late Pliocene to latest Pleistocene. Geol Soc Amer Mem 145:449–464

    Google Scholar 

  • Shackleton NJ, Pisias NG (1985) Atmospheric carbon dioxide, orbital forcing, and climate. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2 natural variations Archean to Present. Amer Geophys Union, Washington DC, pp 303–318

    Chapter  Google Scholar 

  • Short DA, Mengel JG, Crowley TJ, Hyde WT, North GR (1991) Filtering of Milankovitch cycles by Earth’s geography. Quet Res 35:157–173

    Article  Google Scholar 

  • Siegenthaler U, Munnich KO (1981) 13C/12C fractionation during CO2 transfer from air to sea. In: Bolin B (ed) Carbon Cycle Modelling, SCOPE. J Wiley & Sons, Chichester, pp 249–258

    Google Scholar 

  • Spero HJ, Lea DW (1993) Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer. Results from laboratory experiments. Mar Micropaleontol 22:221–234

    Article  Google Scholar 

  • Spero HJ, Lea DW (1996) Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Mar Micropaleontol 28:231–246

    Article  Google Scholar 

  • Spero HJ, Bjima J, Lea DW, Bemis BB (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Article  Google Scholar 

  • Steens TNF, Ganssen G, Kroon D (1992) Oxygen and carbon isotopes in planktonic foraminifera as indicators of upwelling intensity and upwelling-induced high productivity in sediments from the northwestern Arabian Sea. In: Summerhayes CP, Prell WL, Emeis K-C (eds) Upwelling Systems: Evolution Since the Early Miocene. Geol Soc Spec Publ, pp 107–119

    Google Scholar 

  • Tsuchia M, Talley LD, McCartney MS (1994) Water-mass distributions in the western South Atlantic; A section from South Georgia Island (54S) northward across the equator. J Mar Res 52: 55–81

    Article  Google Scholar 

  • Turner JV (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim Cosmochim Acta 46:1183–1191

    Article  Google Scholar 

  • Wefer G, Berger WH, Bickert T, Donner B, Fischer G, Kemle-von Mücke S, Meinecke G, Müller PJ, Mulitza S, Niebler HS, Pätzold J, Schmidt H, Schneider RR, Segl M (1996) Late Quaternary Surface Circulation of the South Atlantic: The Stable Isotope Record and Implications for Heat Transport and Productivity. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 461–502

    Chapter  Google Scholar 

  • Wu G, Berger WH (1989) Planktonic foraminifera: Differential dissolution and the Quaternary stable isotope record in the West Equatorial Pacific. Paleoceanography 4:181–198

    Article  Google Scholar 

  • Zahn R, Sarnthein M (1987) Benthic isotope evidence for changes of the mediterranean outflow during the late Quartenary. Paleoceanography 2: 543–559

    Article  Google Scholar 

  • Zielinski U, Gersonde R, Sieger R, Futterer D (1998) Quaternary surface water temperature estimations: Calibration of a diatom transfer function for the Southern Ocean. Paleoceanography 13: 365–383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mulitza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mulitza, S. et al. (1999). The South Atlantic Carbon Isotope Record of Planktic Foraminifera. In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics