Skip to main content

Towards Large Eddy Simulation of Complex Flows

  • Conference paper
Simulation and Visualization on the Grid

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 13))

  • 232 Accesses

Abstract

Since the Navier-Stokes Equations cannot generally be directly solved for complex flows, one is left with two alternatives: a Reynolds Averaged Simulation, which is the conventional approach, or a Large Eddy Simulation. We have focused on the general applicability of the Very Large Eddy Simulation approach for three cases: flow around a prolate spheroid at incidence, flow over a fully appended submarine, and supersonic flow over a cavity in a curved surface. We have made comparisons between the predictions and experimental data for some statistical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. P. Boris, J. Gardner, A. Landsberg, G. Patniak, and E. S. Oran. LCPFCT: A monotone algorithm for solving continuity equations. NRL Memorandum Report 6410, Naval Research Laboratory, Washington, D.C., 1993.

    Google Scholar 

  2. J. P. Boris, F. F. Grinstein, E. S. Oran, and R. L. Kolbe. New insights into large eddy simulation. Fluid Dyn. Res., 10(199), 1992.

    Google Scholar 

  3. C. J. Chesnakas and R. L. Simpson. Detailed investigation of the three-dimensional separation about a 6:1 prolate spheroid. AIAA J., 35(990), 1997.

    Google Scholar 

  4. J. W. Deardorff. The use of subgrid transport equations in a three-dimensional model of atmospherical turbulence. J. Fluids Engng. Trans ASME, 95(429), 1973.

    Google Scholar 

  5. G. Erlebacher, M. Y. Hussaini, C. G. Speziale, and T. A. Zang. Toward the large-eddy simulation of compressible turbulent flows. J. Fluid Mech.,7(7), 1992.

    Google Scholar 

  6. J. H. Ferziger. Simulation of complex turbulent flows: Recent advances and prospects in wing engineering. In S. Murakami, editor, Cpm. Wind Eng., volume 1, 1993.

    Google Scholar 

  7. C. A. J. Fletcher. Computational Methods in Fluid Dynamics. Springer-Verlag, Berlin & New York, 1992.

    Google Scholar 

  8. C. Fureby. Large eddy simulation of rearward facing step flow. Accepted for publication in AIAA J., November 1999.

    Google Scholar 

  9. C. Fureby and F. F. Grinstein. Monotonically integrated large eddy simulations. AIAA J., 37(544), 1999.

    Google Scholar 

  10. C. Fureby, Y. Nilsson, and K. Andersson. Large eddy simulation of supersonic base flow. Paper 99–0426, AIAA, 1999.

    Google Scholar 

  11. C. Fureby and G. Tabor. Mathematical and physical constraints on large eddy simulations. J. Theoretical Fluid Dyn., 9(85), 1997.

    Google Scholar 

  12. C. Fureby, G. Tabor, H. Weller, and A. D. Gosman. A comparative study of sub grid scale models in homogeneous isotropic turbulence. Phys. Fluids, 9(5):1416–1429, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. C. Fureby, G. Tabor, H. G. Weller, and A. D. Gosman. On differential sub grid scale stress models in large eddy simulations. Phys. Fluids, 9(11):3578–3580, 1997.

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Ghosal. An analysis of numerical errors in large-eddy simulations of turbulence. J. Comp. Phys., 125(187), 1996.

    Google Scholar 

  15. S. Ghosal and P. Moin. The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comp. Phys., 118(24), 1995.

    Google Scholar 

  16. M. Goody, R. L. Simpson, M. Engel, C. Chesnakas, and W. Devenport. Mean velocity and pressure and velocity spectral measurements within a separated flow around a prolate spheroid at incidence. Paper 98–0630, AIAA, 1998.

    Google Scholar 

  17. F. F. Grinstein. Open boundary conditions in the simulation of subsonic turbulent shear flows. J. Comp. Phys., 115(43), 1994.

    Google Scholar 

  18. N. C. Groves, T. T. Huang, and M. S. Chang. Geometric characteristics of DARPA SUBOFF models. Report DTRC/SHD-1298–01, DARPA, 1989.

    Google Scholar 

  19. C. Härtet, L. Kleiser, F. Unger, and R. Friedrich. Subgrid-scale energy transfer in the near wall region of turbulent flows. Phys. Fluids, 6(3130), 1994.

    Google Scholar 

  20. T. T. Huang, H.-L. Liu, N. C. Groves, T. J. Forlini, J. Blanton, and S. Cowing. Measurements of flows over an axisymmetric body with various appendages (DARPA SUBOFF experiments). In 19th Symposium on Naval Hydrodynamics Proceedings, Seoul, South Korea, 1992.

    Google Scholar 

  21. M. Lesieur and O. Metais. New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech., 28(45), 1996.

    Google Scholar 

  22. P.-L. Lions. Mathematical Topics in Fluid Mechanics,Vol. 1: Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford, England, 1996.

    Google Scholar 

  23. V. C. Patel and J. H. Bask. Boundary layers and separation on a spheroid at incidence. AIAA J., 23(55), 1985.

    Google Scholar 

  24. C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. Paper 82–0998, AIAA, 1982.

    Google Scholar 

  25. W. Rodi. A new algebraic relation for calculating the Reynolds stresses. ZAMM, 56(219), 1976.

    Google Scholar 

  26. J. E. Rossiter. Wind tunnel experiments on the flow over rectangular cavities at supersonic and transonic speeds. Reports and Memoranda 3438, Royal Aircraft Establishment, 1964.

    Google Scholar 

  27. U. Schumann. Subgrid scale model for finite difference simulation of turbulent flows in plane channels and annuli. J. Comp. Phys., 18(376), 1975.

    Google Scholar 

  28. U. Schumann. Realizability of Reynolds stress turbulence models. Phys. Fluids, 20(721), 1977.

    Google Scholar 

  29. J. Smagorinsky. General circulation experiments with the primitive equations, is The basic experiment. Month. Wea. Rev., 91(99), 1963.

    Google Scholar 

  30. P. R. Spalart, W.-H. Jou, M. Strelets, and S. R. Allmaras. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Advances in DNS/LES (1st AFOSR Int. Conf. on DNS/LES Proceedings), Ruston, LA, August 1997.

    Google Scholar 

  31. C. G. Speziale. Invariance of turbulent closure models. Phys. Fluids, 22(1033), 1979.

    Google Scholar 

  32. C. G. Speziale. Modeling of turbulent transport equations. In T. B. Gatski, M. Y. Hussaini, and J. L. Lumley, editors, Simulation and Modeling of Turbulent Flows. Oxford University Press, Oxford, England, 1996.

    Google Scholar 

  33. C. G. Speziale. Turbulence modelling for time dependent RANS and VLES: A review. AIAA J., 36(173), 1999.

    Google Scholar 

  34. C.G. Speziale. Some interesting properties of two-dimensional turbulence. Phys. Fluids, 24(1425), 1981.

    Google Scholar 

  35. Y. Takakura, F. Higashino, T. Yoshizawa, and S. Ogawa. Numerical study on unsteady supersonic cavity flows. Paper 96–2092, AIAA, 1996.

    Google Scholar 

  36. C.-Y. Tsai and A. K. Whitney. Numerical study of three-dimensional flow separation for a 6:1 ellipsoid. Paper 99–0172, AIAA, 1999.

    Google Scholar 

  37. Y. Watanabe. Characteristics of Pressure Oscillations in a Supersonic Flow around Cavities PhD thesis, Tokyo Noko University, March 1997.

    Google Scholar 

  38. Y. Watanabe, S. Kudo, and F. Higashino. Effects of cavity configurations on supersonic internal flow. In 20th ISSW Proceedings, 1995

    Google Scholar 

  39. H. G. Weller, G. Tabor, A. D. Gosman, and C. Fureby. Application of a flame-wrinkling LES combustion model to a turbulent shear layer formed at a rearward facing step. In The 27th Int. Symp. on Comb. The Combustion Institute, 1998.

    Google Scholar 

  40. H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to CFD using object oriented techniques. Comp. in Phys., 12(629), 1997.

    Google Scholar 

  41. T. G. Wetzel, R. L. Simpson, and C. J. Chesnakas. Measurement of three-dimensional crossflow separation. AIAA J., 36(557), 1998.

    Google Scholar 

  42. S. L. Woodruff, J. M. Seiner, and M. Y. Hussaini, Grid-size dependence considerations for sub grid scale models for LES of Kolmogorov flows. Presented at the APS DFD Meeting, San Francisco, CA, USA, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alin, N., Berglund, M., Fureby, C., Lillberg, E. (2000). Towards Large Eddy Simulation of Complex Flows. In: Engquist, B., Johnsson, L., Hammill, M., Short, F. (eds) Simulation and Visualization on the Grid. Lecture Notes in Computational Science and Engineering, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57313-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57313-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67264-7

  • Online ISBN: 978-3-642-57313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics