Skip to main content
  • 301 Accesses

Abstract

Fractals, objects with noninteger dimension, may at first sight seem to be unlikely candidates for any practical applications. In this chapter we introduce basic examples and properties of fractal sets starting with a classical example of the Cantor set and introduce different definitions of its dimension. Later we discuss the application of the fractal concept to dynamics and show that it is very useful in the description of strange chaotic attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edgar, G.A. (1990): Measure, Topology and Fractal Geometry, Springer, New York

    MATH  Google Scholar 

  2. Hausdorff, F. (1919): Dimension und ausseres Mass, Mathematische Annalen, 79, 157–179

    Article  MathSciNet  Google Scholar 

  3. Ott, E. (1993): Chaos in Dynamical Systems, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. McDonald, S.W., Grebogi, C., Ott, E. and Yorke, J.A. (1985): Fractal basin boundaries, Physica, 17D, 125–149

    MathSciNet  Google Scholar 

  5. Kaplan, J.L., Yorke, J.A. (1979): Chaotic behaviour of multidimensional difference equations, In: Functional Differential Equations and Approximations of Fixed Points, H.-O. Peitgen and H.-O. Walter, Lecture Notes in Mathematics, 730, Springer, Berlin

    Google Scholar 

  6. Mandelbrot, B. (1982): The Fractal Geometry of Nature, Freeman, San Francisco

    MATH  Google Scholar 

  7. Kolmogorov, A.N. (1958): A new metric invariant of transitive dynamical systems, Dokl. Akad. Nauk SSSR, 119, 861–918

    MathSciNet  MATH  Google Scholar 

  8. Grassberger, P., Procacia, J. (1983): Measuring the strangeness of strange attractors, Physica, 9D, 189–204

    Google Scholar 

  9. Smale, S. (1967): Differentiable Dynamical Systems, Bull. Amer. Math. Soc, 73, 747–774

    Article  MathSciNet  MATH  Google Scholar 

  10. Abraham, R.H., Show, C.D. (1984): Dynamics—The geometry of behaviour, Part III, Ariel Press, Santa Cruz

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kapitaniak, T. (2000). Fractals. In: Chaos for Engineers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57143-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57143-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66574-8

  • Online ISBN: 978-3-642-57143-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics