Skip to main content

The Seminal Contributions of Gregorio Weber to Modern Fluorescence Spectroscopy

  • Chapter
New Trends in Fluorescence Spectroscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 1))

Abstract

Gregorio Weber is acknowledged to be the person responsible for many of the more important theoretical and experimental developments in modern fluorescence spectroscopy In particular, Weber pioneered the application of fluorescence spectroscopy to the biological sciences. His list of achievements includes:

  • The synthesis and use of dansyl chloride as a probe of protein hydrodynamics

  • The extension of Perrin’s theory of fluorescence polarization to fluorophores associated with random orientations with ellipsoids of revolution and to mixtures of fluorophores

  • The first spectral resolution of the fluorescence of the aromatic amino acids and of intrinsic fluorescence of proteins

  • The first demonstration that both FAD and NADH make internal complexes

  • The first report on aromatic secondary amines, which are strongly fluorescent in apolar solvents, but hardly in water, the most spectacular case being the anilino-naphthalene sulfonates (ANS)

  • The first description of the use of the fluorescence of small molecules as probes for the viscosity of micelles, with implications for membrane systems

  • A general formulation of depolarization by energy transfer

  • The discovery of the “red-edge” effect in homo-energy transfer

  • The development of modern cross-correlation phase fluorometry

  • The development of the excitation-emission matrix method for resolving contributions from multiple fluorophores

  • The synthesis of several novel fluorophores, including pyrenebutyric acid, IAEDANS, bis- ANS, PRODAN, and LAURDAN, designed to probe dynamic aspects of biomolecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nickel B (1996) Pioneers in photochemistry: from the Perrin diagram to the Jablonski diagram EPA Newsletter 58:9–38

    CAS  Google Scholar 

  2. Nickel B (1997) Pioneers in photophysics: from the Perrin diagram to the Jablonski diagram. Part 2 EPA Newsletter 61:27–60

    CAS  Google Scholar 

  3. Nickel B (1998) Pioneers in photophysics: from Wiedemann’s discovery to the Jablonski diagram EPA Newsletter 64:19–72

    CAS  Google Scholar 

  4. Weber G (1947) Fluorescence of riboflavin, diaphorase and related substances Ph.D Dissertation, Cambridge University

    Google Scholar 

  5. Perrin F (1926) Polarisation de la lumière de fluorescence Vie moyenne des molécules dans l’état excité Jour de Phys, VIeme Série, 7:390–401

    CAS  Google Scholar 

  6. Weber G (1989) Final words at Bocca di Magra In: Jameson DM, Reinhart GD (eds) Fluorescent biomolecules: methodologies and applications Plenum Press, New York, pp 343–349

    Chapter  Google Scholar 

  7. Weber G (1948) The quenching of fluorescence in liquids by complex formation Determination of the mean life of the complex Trans Faraday Soc 44:185–189

    Article  CAS  Google Scholar 

  8. Weber G (1950) Fluorescence of riboflavin and flavin-adenine dinucleotide Biochem J 47:114–121

    CAS  Google Scholar 

  9. Weber G (1957) Intramolecular transfer of electronic energy in dihydrodiphospho-pyridine nucleotide Nature 180:1409

    Article  CAS  Google Scholar 

  10. Weber G (1958) Transfert d’énergie dans la dihydro-diphosphopyridine J Chim Physique 55:878–886

    CAS  Google Scholar 

  11. Weber G (1966) Intramolecular complexes of flavins In: Slater EC (ed) Flavins and flavoproteins. Elsevier, Amsterdam, pp 15–21

    Google Scholar 

  12. Scott GT, Spencer RD, Leonard N, Weber G (1970) Emission properties of NADH Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models J Amer Chem Soc 92:687–695

    Article  CAS  Google Scholar 

  13. Spencer RD, Weber G (1972) Thermodynamics and kinetics of the intramolecular complex in flavin adenine dinucleotide In: Akeson A, Ehrenberg A (eds) Structure and function of oxidation reduction enzymes, Pergamon, Oxford New York, pp 393–399

    Google Scholar 

  14. Weigert F (1920) Über polarisiertes Fluorszenzlicht Verh d D Phys Ges 1:100–102

    Google Scholar 

  15. Vavilov SI, Levschin WL (1923) Beiträge zur Frage über polarisiertes Fluoreszenzlicht von Farbstofflösungen II Z Physik 16:134–154

    Google Scholar 

  16. Shinitzky M, Dianoux AC, Gitler C, Weber G (1971) Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes I. Synthetic micelles Biochemistry 10:2106–2113

    Article  CAS  Google Scholar 

  17. Cogan U, Shinitzky M, Weber G, Nishida T (1973) Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes Biochemistry 12:521–527

    Article  CAS  Google Scholar 

  18. Weber G (1977) Theory of differential phase fluorometry: detection of anisotropic molecular rotations J Chem Phys 66:4081–4091

    Article  CAS  Google Scholar 

  19. Weber G, Mitchell GM (1976) Detection of anisotropic rotations by differential phase fluorometry In: Birks JB (ed) Excited states of biological membranes Wiley, London, pp 72–76

    Google Scholar 

  20. Mantulin WW, Weber G (1977) Rotational anisotropy and solvent fluorophore bonds: an investigation by differential polarized phase fluorometry Chem Phys 66:4092–4099

    CAS  Google Scholar 

  21. Weber G (1952) Polarization of the fluorescence of macromolecules I Theory and experimental method Biochem J 51:145–155

    CAS  Google Scholar 

  22. Weber G (1952) Polarization of the fluorescence of macromolecules II Fluorescent conjugates of ovalbumin and bovine serum albumin Biochem J 51:155–167

    CAS  Google Scholar 

  23. Laurence DJR (1952) A study of the adsorption of dyes on bovine serum albumin by the method of polarization of fluorescence Biochem J 51:168–177

    CAS  Google Scholar 

  24. Dandliker WB, Feijen GA (1961) Quantification of the antigen-antibody reaction by the polarization of fluorescence Biochem Biophys Res Comm 5:299–304

    Article  CAS  Google Scholar 

  25. Dandliker WB, deSaussure VA (1970) Fluorescence polarization in immunochemistry. Immunochemistry 7:799–828

    Article  CAS  Google Scholar 

  26. Levinson SA, Dandliker WB, Brawn RJ, Vanderlaan WP (1976) Fluorescence polarization measurement of the hormone-binding site interaction Endocrinology 99:1129–1143

    Article  Google Scholar 

  27. Jameson DM, Sawyer, WH (1995) Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol 246:283–300

    Article  CAS  Google Scholar 

  28. Jablonski A (1960) On the notion of emission anisotropy Bull Acad Polon Sci, Série des Sci Math et Phys 8:259–264

    CAS  Google Scholar 

  29. Singleterry CR, Weinberger LA (1951) The size of soap micelles in benzene from osmotic pressure and from the depolarization of fluorescence J Am Chem Soc 73:4574–4579

    Article  CAS  Google Scholar 

  30. Steiner RF, McAlister AJ (1957) Use of the fluorescence technique as an absolute method for obtaining mean relaxation times of globular proteins J Polymer Sci 24:105–123

    Article  CAS  Google Scholar 

  31. Weber, G (1953) Rotational Brownian motion and polarization of the fluorescence of solutions. Adv Prot Chem 8,415–459

    Article  CAS  Google Scholar 

  32. Weber G (1954) Concentration depolarization of the fluorescence of solutions Trans Faraday Soc 50:552–557

    Article  CAS  Google Scholar 

  33. Weber G (1956) Photoelectric method for the measurement of the polarization of the fluorescence of solutions J Opt Soc Amer 46:962–970

    Article  CAS  Google Scholar 

  34. Weber G, Laurence DJR (1954) Fluorescent indicators of adsorption in aqueous solution and on the solid phase Biochem J 56: xxxi

    CAS  Google Scholar 

  35. Debye P, Edwards JO (1952) A note on the phosphorescence of proteins Science 116: 143–144

    Article  CAS  Google Scholar 

  36. McClure DS (1949) Triplet-singlet transitions in organic molecules: lifetime measurements of the triplet state J Chem Phys 17:905–913

    Article  CAS  Google Scholar 

  37. Shore VG, Pardee AB (1956) Fluorescence of some proteins, nucleic acids and related compounds Arch Biochem Biophys 60:100–107

    Article  CAS  Google Scholar 

  38. Teale FWJ, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids Biochem J 53:476–482

    Google Scholar 

  39. Weber G, Teale FWJ (1957) Determination of the absolute quantum yield of fluorescent solutions Trans Faraday Soc 53:646–655

    Article  CAS  Google Scholar 

  40. Weber G, Teale FWJ (1958) Fluorescence excitation spectrum of organic compounds in solution Trans Faraday Soc 54:640–648

    Article  CAS  Google Scholar 

  41. Weber G, Teale FWJ (1959) Electronic energy transfer in heme proteins Faraday Soc Discussions 27:134–141

    Article  Google Scholar 

  42. Teale FWJ, Weber G (1959) Ultraviolet fluorescence of proteins Biochem J 72:15 p

    Google Scholar 

  43. Weber G, Teale FWJ (1959) Polarization of the ultraviolet fluorescence and electronic energy transfer in proteins Biochem J 72:15p

    Google Scholar 

  44. Weber G (1960) Fluorescence polarization spectrum and electronic energy transfer in tyrosine, tryptophan and related compounds Biochem J 75:335–345

    CAS  Google Scholar 

  45. Weber G (1960) Fluorescence-polarization spectrum and electronic energy transfer in proteins Biochem J 75:345–352

    CAS  Google Scholar 

  46. Velick S (1958) Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase complexes J Biol Chem 237:1455–1467

    Google Scholar 

  47. Velick S, Parker CW, Eisen HN (1960) Excitation energy transfer and the quantitative study of the antibody hapten reaction Proc Natl Acad Sci USA 46:1470–1482

    Article  CAS  Google Scholar 

  48. Alpert B, Jameson DM, Weber G (1980) Tryptophan emission from human hemoglobin and its isolated subunits Photochem Photobiol 31:1–4

    Article  CAS  Google Scholar 

  49. Valeur B, Weber G (1977) Resolution of the fluorescence excitation spectrum of indole into the ILa and ILb excitations bands Photochem Photobiol 25:441–444

    Article  CAS  Google Scholar 

  50. Weber G (1961) Excited states of proteins In: McElroy WD, Glass B (eds) Light and life. Johns Hopkins Press, Baltimore, pp 82–106

    Google Scholar 

  51. Perrin J (1926) Lumière et réactions chimiques In, Structure et activité chimiques, rapports et discussions Gauthier-Villars, Paris, pp 322–399

    Google Scholar 

  52. Weber G (1954) Dependence of the polarization of the fluorescence on the concentration. Trans Faraday Soc 50:552–555

    Article  CAS  Google Scholar 

  53. Weber G, Shinitsky M (1970) Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum Proc Natl Acad Sci USA 65:823–830

    Article  CAS  Google Scholar 

  54. Hamman BD, Oleinikov AV, Jokhadze GG, Traut RR, Jameson DM (1996) Dimer/monomer equilibrium and subunit exchange of Escherichia coli ribosomal protein L7/L12 Biochemistry 35:16, 680–16,686

    CAS  Google Scholar 

  55. Helms MK, Hazlett TL, Mizuguchi H, Hasemann CA, Uyeda K, Jameson DM (1998) Sitedirected mutants of rat testis fructose 6-phosphate, 2-kinase:fructose 2,6-bisphosphatase: localization of conformational alterations induced by ligand binding Biochemistry 37:14,057–14,064

    Article  CAS  Google Scholar 

  56. Valeur B, Weber G (1977) Anisotropie rotations in 1-naphthylamine Existence of a rededge transition moment normal to the ring plane Chem Phys Lett 45:140–144

    Article  CAS  Google Scholar 

  57. Valeur B, Weber G (1978) A new red-edge effect in aromatic molecules: anomaly of apparent rotation revealed by fluorescence polarization J Chem Phys 69:2393–2400

    Article  CAS  Google Scholar 

  58. Weber G (1960) Enumeration of components in complex systems by fluorescence spectrophotometry. Nature 190:27–29

    Article  Google Scholar 

  59. Christian GD, Callis JN, Davidson ER (1981) Array detectors and excitation-emission matrices in multicomponent analysis In: Wenry EL (ed) Modern fluorescence spectroscopy. Plenum Press, Chap 4

    Google Scholar 

  60. Soper SA, McGown LB, Warner IM (1994) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry Anal Chem 15:428R–444R

    Article  Google Scholar 

  61. Gottlieb YY, Wahl P (1963) Étude théorique de la polarisation de fluorescence des macromolécules portant un groupe émetteur mobile autour d’un axe de rotation J Chim Phys 60:849–856

    Google Scholar 

  62. Wahl P, Weber G (1967) Fluorescence depolarization of rabbit gamma globulin conjugates. J Mol Biol 30:371–382

    Article  CAS  Google Scholar 

  63. Knopp JA, Weber G (1969) Fluorescence polarization of pyrenebutyric bovine serum albumin and pyrenebutyric-human macroglobulin conjugates J Biol Chem 244:6309–6315

    CAS  Google Scholar 

  64. Rosen CG, Weber G (1969) Dimer formation from 1-anilino-8-naphthalene sulfonate catalyzed by bovine serum albumin — a new fluorescent molecule with exceptional binding properties Biochemistry 8:3915–6315

    Article  CAS  Google Scholar 

  65. Hudson EN, Weber G (1973) Synthesis and characterization of two fluorescent sulfhydryl reagents Biochemistry 12:4154–4161

    Article  CAS  Google Scholar 

  66. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 2-dimethylamino-6-propionylnaphthalene Biochemistry 18:3075–3078

    Article  CAS  Google Scholar 

  67. Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994) Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence Biophys J 66:120–132

    Article  CAS  Google Scholar 

  68. Parasassi T, Gratton E, Yu W, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan gp-domains in model and natural membranes Biophys J 72:2413–2429

    Article  CAS  Google Scholar 

  69. Bagatolli LA, Gratton E, Fidelio GD (1998) Water dynamics in glycosphingolipid aggregates studied by Laurdan fluorescence Biophys J 75:331–341

    Article  CAS  Google Scholar 

  70. Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles Biophys J 77:2090–2101

    Article  CAS  Google Scholar 

  71. Macgregor RB, Weber G (1981) Fluorophores in polar media: spectral effects of the Langevin distribution of electrostatic interactions Annals NY Acad Sci 366:140–150

    Article  CAS  Google Scholar 

  72. Macgregor RB, Weber G ( 1986) Estimation of the polarity of the protein interior by optical spectroscopy Nature 319:70–72

    Article  CAS  Google Scholar 

  73. Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan) A thiol-selective, polarity-sensitive fluorescence probe J Biol Chem 25:7541–7544

    Google Scholar 

  74. Leonard NJ (1997) The ‘Chemistry’of research collaboration Tetrahedron 53:2323–2355

    Article  Google Scholar 

  75. Secrist JA III, Barrio JR, Leonard NJ, Weber G (1972) Fluorescent modifications of adenosine containing coenzymes Biological activities and spectroscopic properties Biochemistry 11:3499–3506

    Article  CAS  Google Scholar 

  76. Barrio JR, Tolman GL, Leonard NJ, Spencer, RD, Weber G (1973) Flavin 1, N6-ethenoadenine dinucleotide: dynamic and static quenching of fluorescence Proc Natl Acad Sci USA 70:941–943

    Article  CAS  Google Scholar 

  77. Spencer RD, Weber G, Tolman GL, Barrio JR, Leonard NJ (1974) Species responsible for the fluorescence of 1, N6-ethenoadenosine Eur J Biochem 45:425–429

    Article  CAS  Google Scholar 

  78. Gaviola E (1926) Die Abklingzeiten der Fluoeszenz von Farbstofflösungen Z Physik 35:748–756

    Article  CAS  Google Scholar 

  79. Spencer RD, Weber G ( 1969) Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer Annals New York Acad Sci 158:361–376

    Article  CAS  Google Scholar 

  80. Teale FWJ (1983) Phase and modulation fluorometry In: Cundall RB, Dale RE (eds) Time-resolved fluorescence spectroscopy in biochemistry and biology NATO ASI Series A: Life sciences vol 69, Plenum Press, London, pp 59–80

    Google Scholar 

  81. French T, So PTC, Dong CY, Berland KM, Gratton E (1997) Fluorescence lifetime imaging techniques for microscopy In, Sluder G, Wolf D (eds) Methods in cell biology Video microscopy, vol 56, pp 227–304

    Google Scholar 

  82. Franceschini MA, Wallace D, Barbieri B, Fantini S, Mantulin WW, Pratesi S, Donzelli GP, Gratton E (1997) Optical study of the skeletal muscle during exercise with a second generation frequency-domain tissue oximeter SPIE Proc 2979:807–814

    Article  Google Scholar 

  83. Franceschini MA, Moesta KT, Fantini S, Gaida G, Gratton E, Jess H, Mantulin WW, Seeber M, Schlag PM, Kaschke M (1997) Frequency-domain instrumentation techniques enhances optical mammography: initial clinical results Proc Natl Acad Sci USA 94:6468–6473

    Article  CAS  Google Scholar 

  84. Spencer RD, Weber G (1970) Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime J Chem Phys 52:1654–1663

    Article  CAS  Google Scholar 

  85. Weber G (1981) Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements J Phys Chem 85:949–953

    Article  CAS  Google Scholar 

  86. Jameson DM, Weber G (1981) Resolution of the pH dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements J Phys Chem 85:953–958

    Article  CAS  Google Scholar 

  87. Jameson DM, Gratton E (1983) Analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry In: Eastwood D (ed) New directions molecular luminescence ASTM STP 822, American Society for Testing and Materials, Philadelphia, pp 67–81

    Chapter  Google Scholar 

  88. Jameson DM, Gratton E, Hall RD (1984) The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry App Spectros Rev 20:55–106

    Article  CAS  Google Scholar 

  89. Gadalla TWJ, Clegg RM, Jovin TM (1994) Fluorescence lifetime imaging microscopy: pixel by pixel analysis of phase-modulation data Bioimaging 2:139–159

    Article  Google Scholar 

  90. Gratton E, Limkeman M (1983) A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution Biophys J 44:315–324

    Article  CAS  Google Scholar 

  91. Gratton E, Jameson DM, Rosato N, Weber G (1984) A multifrequency cross-correlation phase fluorometer using synchrotron radiation Rev Sci Instrum 55:486–494

    Article  CAS  Google Scholar 

  92. Gratton E, Mantulin WW, Weber G, Royer CA, Jameson DM, Reininger R, Hansen RWC (1996) Fluorescence dynamics of biological systems using synchrotron radiation Rev Sci Instrum 67:1–7

    Article  Google Scholar 

  93. Weber G (1971) Theory of fluorescence depolarization by anisotropic Brownian rotations: discontinuous distribution approach J Chem Phys 55:2399–2407

    Article  CAS  Google Scholar 

  94. Belford GC, Belford RL, Weber G (1972) Dynamics of fluorescence polarization macromolecules. Proc Natl Acad Sci USA 69:1392–1393

    Article  CAS  Google Scholar 

  95. Ehrenberg M, Rigler R (1972) Polarized fluorescence and rotational Brownian motion. Chem Phys Lett 14:539–544

    Article  CAS  Google Scholar 

  96. Weber G (1989) Perrin revisited: parametric theory of the motional depolarization of fluorescence J Phys Chem 93:6069–6973

    Article  CAS  Google Scholar 

  97. Jameson DM, Spencer RD, Weber G (1976) Construction and performance of a scanning, photon-counting spectrofluorometer Rev Sci Instru 47:1034–1038

    Article  CAS  Google Scholar 

  98. Jameson DM, Weber G, Spencer RD, Mitchell G (1978) Fluorescence polarization: measurements with a photon-counting photometer Rev Sci Instru 49:510–514

    Article  CAS  Google Scholar 

  99. Vaughan WM, Weber G (1970) Oxygen quenching pyrenebutyric acid fluorescence in water A dynamic probe of the microenvironment Biochemistry 9:464–473

    Article  CAS  Google Scholar 

  100. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen A probe for structural fluctuations in macromolecules Biochemistry 12:4161–4170

    Article  CAS  Google Scholar 

  101. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen Detection of structural fluctuations in proteins in the nanosecond time scale Biochemistry 12: 4171–4179

    Article  CAS  Google Scholar 

  102. Weber G (1975) Energetics of ligand binding to proteins Adv Prot Chem 29:1–83

    Article  CAS  Google Scholar 

  103. Weber G, Tanaka F, Okamoto BY, Drickamer HG (1974) The effect of pressure on the molecular complex of isoalloxazine and adenine Proc Natl Acad Sci USA 71:1264–1266

    Article  CAS  Google Scholar 

  104. Silva, JL, Weber G (1993) Pressure stability of proteins Annu Rev Phys Chem 44:89–113

    Article  CAS  Google Scholar 

  105. Silva JL, Luan P, Glaser M, Voss EW, Weber G (1992) Effects of hydrostatic pressure on a membrane-enveloped virus: high immunogenicity of the pressure-inactivated virus J Virology 66:2111–2117

    CAS  Google Scholar 

  106. Juriekwicz E, Villas-Boas M, Silva JL, Weber G, Hunsmann G, Clegg RM (1995) Inactivation of simian immunodeficiency virus by hydrostatic pressure Proc Natl Acad Sci USA 92:6935–6937

    Article  Google Scholar 

  107. Weber G (1993) Thermodynamics of the association and the pressure dissociation of oligomeric proteins J Phys Chem 97:7108–7115

    Article  CAS  Google Scholar 

  108. Weber G (1998) Thermodynamic concepts in protein condensation Comm Mol Cell Biophys 9:201–218

    Google Scholar 

  109. Weber G (1992) Protein interactions Chapman and Hall, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jameson, D.M. (2001). The Seminal Contributions of Gregorio Weber to Modern Fluorescence Spectroscopy. In: Valeur, B., Brochon, JC. (eds) New Trends in Fluorescence Spectroscopy. Springer Series on Fluorescence, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56853-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56853-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63214-3

  • Online ISBN: 978-3-642-56853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics