Skip to main content

Towards an Ecology of Motion Vision

  • Chapter
Motion Vision

Abstract

Natural motion signals, as a working definition, are those that are actually encountered by specific animals in the environment they normally operate in. The need to consider specific animals arises because the motion signals that are processed by a brain depend on the ethological and ecological context. Motion signals are determined by environmental motion, by the type and structure of locomotion of an animal, and by the visual topography of the world the animal operates in. We suggest that it is essential to consider natural motion signals in more detail, since they may reveal constraints that have shaped the evolution of motion detection and information processing mechanisms. The primary focus of this paper is to outline what needs to be considered and what is required to characterize the biologically relevant information content of the visual motion environment of an animal. In particular, we discuss the principal sources of image motion, critically assess the different ways of reconstructing, analysing and modelling natural motion signals, and briefly summarize current attempts to identify coding strategies, matched filters and optimization of neurones involved in processing visual information. We end with a survey of sensory and neural adaptations to show the multiple levels of processing at which motion filters have evolved under the influence of natural motion signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Autrum H (1950) X Die Belichtungspotentiale and das Sehen der Insekten (Untersuchungen anCalliphoraandDixippus)Z Vergl Physiol 32: 176–227

    Google Scholar 

  • Baddeley R, Abbott LF, Booth MCA, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc Roy Soc Lond B 264: 1775–1783

    CAS  Google Scholar 

  • Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge, pp 217–234

    Google Scholar 

  • Barnes WJP, Nalbach H-O (1993) Eye movements in freely moving crabs: their sensory basis and possible role in flow-field analysis. Comp Biochem Physiol 104A: 675–693

    Google Scholar 

  • Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comp Vision 12: 43–77

    Google Scholar 

  • Black MJ, Rangarajan A. (1996) On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int J Comp Vision 19: 57–92.

    Google Scholar 

  • Blanke H, Nalbach H-O, Varjú D (1997) Whole-field integration, not detailed analysis, is used by the crab optokinetic system to separate rotation and translation in optic flow. J Comp Physiol A 181: 383–392

    Google Scholar 

  • Borst A, Egelhaaf M (1993) Detecting visual motion: Theory and models. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilisation of gaze. Elsevier, Amsterdam, pp 3–27

    Google Scholar 

  • Burghagen H, Ewert J-P (1983) Influence of the background for discriminating object motion from self-induced motion in toadsBufo bufo(L.). J Comp Physiol 152: 241–249

    Google Scholar 

  • Burton GJ, Moorhead IR (1987) Color and spatial structure in natural scenes. Appl Optics 26: 157–170

    CAS  Google Scholar 

  • Christy JH (1995) Mimicry, mate choice, and the sensory trap hypothesis. Am Nat 146: 171–181 Collett TS, Land MF (1975a) Visual control of flight behaviour in the hoverflySyritta pipiensL. J Comp Physiol 99: 1–66

    Google Scholar 

  • Collett TS, Land MF (1975b) Visual spatial memory in a hoverfly. J Comp Physiol 100:59–84 Collett TS, Land MF (1979) How hoverflies compute interception courses. J Comp Physiol 125: 191–204

    Google Scholar 

  • Coppola DM, Purves HR, McCoy AN, Purves D (1998) The distribution of oriented contours in the real world. Proc Natl Acad Sci 95: 4002–4006

    PubMed  CAS  Google Scholar 

  • Coutts MP, Grace J (1995) Wind and trees. Cambridge University Press, Cambridge

    Google Scholar 

  • Cutting JE (1982) Blowing in the wind: perceiving structure in trees and bushes. Cognition 12: 25–44

    PubMed  CAS  Google Scholar 

  • Dahmen HJ, Junger W (1988) Adaptation to the watersurface: structural and functional specialisation of the Gerrid eye. In: Elsner N, Barth FG (eds) Sense Organs. Proc 16th Göttingen Neurobiol Conf. Thieme Verlag, Stuttgart, p 233

    Google Scholar 

  • Davies MNO, Green PR (1988) Head-bobbing during walking, running and flying: relative motion perception in the pigeon. J Exp Biol 138: 71–91

    Google Scholar 

  • Dieringer N, Cochran SL, Precht W (1983) Differences in the central organization of gaze stabilizing reflexes between frog and turtle. J Comp Physiol 153: 495–508

    Google Scholar 

  • Dieringer N, Reichenberger I, Graf W (1992) Differences in optokinetic and vestibular ocular reflex performance in Teleosts and their relationship to different life styles. Brain Behav Evol 39: 289–304

    PubMed  CAS  Google Scholar 

  • Dong DW, Atick JJ (1995a) Statistics of natural time-varying images. Network: Comp Neural Syst 6: 345–358

    Google Scholar 

  • Dong DW, Atick JJ (1995b) Temporal decorrelation: A theory of lagged and nonlagged responses in the lateral geniculate nucleus. Network: Comp Neural Syst 6: 159–178

    Google Scholar 

  • Dubois MFW, Collewijn H (1979) The optokinetic reactions of the rabbit: Relation to the visual streak. Vision Res 19: 9–17

    PubMed  CAS  Google Scholar 

  • Eckert MP, Buchsbaum G (1993a) Effect of tracking strategies on the velocity structure of two-dimensional image sequences. J Opt Soc Am A10: 1993–1996

    Google Scholar 

  • Eckert MP, Buchsbaum G (1993b) Efficient coding of natural time varying images in the early visual system. Phil Trans Roy Soc Lond B 339: 385–395

    Google Scholar 

  • Eckert MP, Buchsbaum G, Watson AB (1992) Separability of spatiotemporal spectra of image sequences. IEEE Trans Pattern Anal Machine Intel) 14: 1210–1213

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–153

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilisation of gaze. Elsevier, Amsterdam, pp 53–77

    Google Scholar 

  • Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte(Bufo bufoL.). Pflügers Arch 308: 225–243

    PubMed  CAS  Google Scholar 

  • Ewert J-P (1980) Neuroethology. Springer Verlag, Berlin

    Google Scholar 

  • Ewert J-P, Relut B (1969) Quantitative Analyse der Reiz-Reaktions-Beziehungen bei visuellemAuslösen des Fluchtverhaltens der Wechselkröte(Bufo viridisLaur.). Behaviour 35: 212–233

    Google Scholar 

  • Ewert J-P, Arend B, Becker V, Borchers H-W (1979) Invariants in configurational prey selection byBufo bufo(L.). Brain Behav Evol 16: 38–51

    PubMed  CAS  Google Scholar 

  • Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4: 2379–2394

    PubMed  CAS  Google Scholar 

  • Field DJ (1994) What is the goal of sensory coding? Neural Computation 6: 559–601

    Google Scholar 

  • Fleishman LJ (1986) Motion detection in the presence and absence of background motion in anAnolislizard. J Comp Physiol A159: 711–720

    Google Scholar 

  • Fleishman LI (1988) Sensory and environmental influences on display form inAnolis auratusa grass anole from Panama. Behav Ecol Sociobiol 22: 309–316

    Google Scholar 

  • Frost BJ (1978) The optokinetic basis of head-bobbing in the pigeon. J Exp Biol 74: 187–195

    Google Scholar 

  • Frost BJ (1993) Subcortical analysis of visual motion: Relative motion, figure-ground discrimination and induced optic flow. In: Miles FA, Walhnan J (eds) Visual motion and its role in the stabilisation of gaze. Elsevier, Amsterdam, pp 159–175

    Google Scholar 

  • Frost BJ, Sun H (1997) Visual motion processing for figure/ground segregation, collision avoidance, and optic flow analysis in the pigeon. In: Venkatesh S, Srinivasan MV (eds) From living eyes to seeing machines. Oxford Univesity Press, Oxford, pp 80–103

    Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gilbert C, Strausfeld NJ (1991) The functional organisation of male-specific visual neurons in flies. J Comp Physiol A 169: 395–411

    PubMed  CAS  Google Scholar 

  • van de Grind WA, Koenderink JJ, van Doom AJ (1986) The distribution of human motion detector properties in the monocular visual field. Vision Res 26: 797–810

    PubMed  Google Scholar 

  • van Hateren JH (1992) Theoretical predictions of spatiotemporal receptive fields of fly LMC’s, and experimental validation. J Comp Physiol A 171: 157–170

    Google Scholar 

  • van Hateren JH (1993) Three modes of spatiotemporal preprocessing by eyes. J Comp Physiol A 172: 583–591

    PubMed  Google Scholar 

  • van Hateren JH (1997) Processing of natural time series of intensities by the visual system of the blowfly. Vision Res 37: 3407–3416

    PubMed  Google Scholar 

  • Hausen K (1993) The decoding of retinal image flow in insects. In: Miles FA, Waliman J (eds) Visual motion and its role in the stabilisation of gaze. Elsevier, Amsterdam, pp 203–235

    Google Scholar 

  • Hausen K, Strausfeld NJ (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc Roy Soc Lond B 208: 57–71

    Google Scholar 

  • Hildreth EC, Koch C (1987) The analysis of motion: From computational theory to neural mechanisms. Ann Rev Neurosci 10: 477–533

    PubMed  CAS  Google Scholar 

  • Howard J, Dubs A, Payne R (1984) The dynamics of phototransduction in insects. J Comp Physiol A 154: 707–718

    Google Scholar 

  • Junger W, Dahmen HJ (1991) Response to self-motion in waterstriders: visual discrimination between rotation and translation. J Comp Physiol A 169: 641–646

    Google Scholar 

  • Johnston A, Wright KT (1986) Matching velocity in central and peripheral vision. Vision Res 26: 1099–1109

    PubMed  CAS  Google Scholar 

  • Kelber A, Zeil J (1990) A robust procedure for visual stabilisation of hovering flight position in guard bees ofTrigona(Tetragonisca)angustula(Apidae, Meliponinae). J Comp Physiol A 167: 569–577

    Google Scholar 

  • Kelly DH (1979) Motion and vision. II. Stabilized spatio-temporal threshold surface. J Opt Soc Am 69: 1340–1349

    PubMed  CAS  Google Scholar 

  • Kern R, Nalbach H-O, Varjú D (1993) Interactions of local movement detectors enhance the detection of rotation. Optokinetic experiments with the rock crabPachygrapsus marmoratus.Visual Neurosci 10: 643–646

    CAS  Google Scholar 

  • Kern R, Warzecha A-K (1998) Coding of motion as seen out of the cockpit of a behaving fly. In: Elsner N, Wenner R (eds) New Neuroethology on the Move. Proc 26th Göttingen Neurobiol Conf. Thieme Verlag Stuttgart, p 126

    Google Scholar 

  • Koenderink JJ (1986) Optic flow. Vision Res 26: 161–180

    PubMed  CAS  Google Scholar 

  • Kral K, Poteser M (1997) Motion parallax as a source of distance information in locusts and mantids. J Insect Behav 10: 145–163

    Google Scholar 

  • Krapp HG, Hengstenberg R (1997) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384: 463–466

    Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive field organisation of optic flow processing interneurons in the fly. J Neurophysiol 79: 1902–1917

    PubMed  CAS  Google Scholar 

  • Kunze P (1963) Der Einfluss der Grösse bewegter Felder auf den optokinetischen Augennystagmus der Winkerkrabbe(Uca pugnax).Ergeb Biol 26: 55–62

    Google Scholar 

  • Lambin M (1987) A method for identifying the nearby spatial cues used by animals during transverse orientation. Behav Processes 14:1–10

    Google Scholar 

  • Land MF (1989) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 90–111

    Google Scholar 

  • Land MF (1993) The visual control of courtship behaviour in the flyPoecilobothrus nobilitans.J Comp Physiol A 173: 595–603

    Google Scholar 

  • Land MF (1995) The functions of eye movements in animals remote from man. In: Findlay JM, Walker R, Kentridge RW (eds) Eye movement research. Elsevier, Amsterdam, pp 63–76

    Google Scholar 

  • Land MF (1997) Visual acuity in insects. Ann Rev Entomol 42: 147–177

    CAS  Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies(Fannia canicularis).J Comp Physiol 89: 331–357

    Google Scholar 

  • Land MF, Layne J (1995) The visual control of behaviour in fiddler crabs: I. Resolution, thresholds and the role of the horizon. J Comp Physiol A 177: 81–90

    Google Scholar 

  • Land MF, Lee DN (1994) Where we look when we steer. Nature 369: 742–744

    PubMed  CAS  Google Scholar 

  • Lappe M, Pekel M, Hoffmann K-P (1998) Optokinetic eye movements elicited by radial optic flow in the Macaque monkey. J Neurophysiol 79: 1461–1480

    PubMed  CAS  Google Scholar 

  • Laughlin SB (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch 36: 910–912

    CAS  Google Scholar 

  • Laughlin SB, Weckstrom M (1993) Fast and slow photoreceptors - a comparative study of the functional diversity of coding and conductances in the Diptera. J Comp Physiol A 172: 593–609

    Google Scholar 

  • Layne J, Land MF, Zeil J (1997) Fiddler crabs use the visual horizon to distinguish predators from conspecifics: A review of the evidence. J Mar Biol UK 77: 43–54

    Google Scholar 

  • Lehrer M, Srinivasan MV (1994) Active vision in honeybees: task-oriented suppression of an innate behaviour. Vision Res 34: 511–516

    PubMed  CAS  Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc of the Inst Radio Engineers 47: 1940–1951

    Google Scholar 

  • Manteuffel G, Kopp J, Himstedt W (1986) Amphibian optokinetic afternystagmus: properties and comparative analysis in various species. Brain Behav Evol 28: 186–197

    PubMed  CAS  Google Scholar 

  • Martin N, Franceschini N (1994) Obstacle avoidance and speed control in a mobile vehicle equipped with a compoundeye.In: Masaki I (ed) Intelligent vehicles. MIT Press, Cambridge, pp 381–386

    Google Scholar 

  • Marr D (1982) Vision. Freeman and Company, New York

    Google Scholar 

  • McKee SP, Nakayama K (1984) The detection of motion in the peripheral visual field. Vision Res 24: 25–32

    PubMed  CAS  Google Scholar 

  • Nalbach H-O (1989) Three temporal frequency channels constitute the dynamics of the optokinetic system of the crabCarcinus maenas(L.). Biol Cybern 61: 59–70

    Google Scholar 

  • Nalbach H-O (1990) Multisensory control of eyestalk orientation in decapod crustaceans: An ecological approach. J Crust Biol 10: 382–399

    Google Scholar 

  • Nalbach H-O(1992) Translational head movements of pigeons in response to a rotating pattern: characteristics and tool to analyse mechanisms underlying detection of rotational and translational optical flow. Exp Brain Res 92: 27–38

    PubMed  CAS  Google Scholar 

  • Nalbach H-O, Nalbach G (1987) Distribution of optokinetic sensitivity over the eye of crabs: its relation to habitat and possible role in flow-field analysis. J Comp Physiol A 160: 127–135

    Google Scholar 

  • Neri P, Morone MC, Burr DC (1998) Seeing biological motion. Nature 395: 894–896

    PubMed  CAS  Google Scholar 

  • O’Carroll DC, Bidwell NJ, Laughlin SB, Warrant EJ (1996) Insect motion detectors matched to visual ecology. Nature 382: 63–66

    PubMed  Google Scholar 

  • O’Carroll DC, Laughlin SB, Bidwell NJ, Harris EJ (1997) Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects. Vision Res 37: 3427–3439

    PubMed  Google Scholar 

  • Passaglia C, Dodge F, Herzog E, Jackson S, Barlow R (1997) Deciphering a neural code for vision. Proc Natl Acad Sci 94: 12649–12654

    PubMed  CAS  Google Scholar 

  • Perrone JA, Stone LS (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vision Res 34: 2917–2938

    PubMed  CAS  Google Scholar 

  • Ruderman D (1997) Origins of scaling in natural images. Vision Res 23: 3385–3398

    Google Scholar 

  • Ryan MJ (1990) Sexual selection, sensory systems and sensory exploitation. Oxford Surveys of Evol Biol 7: 157–195

    Google Scholar 

  • Salmon M, Hyatt G, McCarthy K, Costlow JD (1978) Display specificity and reproductive isolation in the fiddler crabsUca panaceaand U. pugilator.Z Tierpsycho148: 251–276

    Google Scholar 

  • Salmon M, Hyatt GW (1983) Communication. In: Vernberg FJ, Vernberg WG (eds) The Biology of Crustacea 7: Behavior and ecology. Academic Press, New York, pp 1–40

    Google Scholar 

  • van der Schaaf A, van Hateren H (1996) Modelling the power spectra of natural images: statistics and information. Vision Res 36: 2759–2770

    PubMed  Google Scholar 

  • de Souza JM, Ventura DF (1989) Comparative study of temporal summation and response form in hymenopteran photoreceptors. J Comp Physiol A 165: 237–245

    PubMed  Google Scholar 

  • Srinivasan MV, Bernard G (1975) The effect of motion on visual acuity of the compound eye: a theoretical analysis. Vision Res 15: 515–525

    PubMed  CAS  Google Scholar 

  • Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc Roy Soc Lond B 216: 427–459

    CAS  Google Scholar 

  • Srinivasan MV, Zhang SW, Lehrer M, Collett TS (1996) Honeybee navigationen routeto the goal: visual flight control and odometry. J Exp Biol 199: 237–244

    PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW, Chahl JS, Barth E, Venkatesh S (2000) How honeybees make grazing landings on flat surfaces. Biol Cybem (in press)

    Google Scholar 

  • Switkes B, Mayer MJ, Sloan JA (1978) Spatial frequency analysis of the visual environment: Anisotropy and the carpentered environment hypothesis. Vision Res 18: 1393–1399

    PubMed  CAS  Google Scholar 

  • Tomsic D, Massoni V, Maldonado H (1993) Habituation to a danger stimulus in two semi-terrestrial crabs: ontogenic, ecological and opioid modulation correlates. J Comp Physiol A 173: 621–633

    Google Scholar 

  • Voss R (1995) Information durch Eigenbewegung: Rekonstruktion and Analyse des Bildflusses am Auge fliegender Insekten. Doctoral Thesis, Universität Tübingen

    Google Scholar 

  • Voss R, Zeil J (1998) Active vision in insects: An analysis of object-directed zig-zag flights in a ground-nesting wasp(Odynerus spinipesEumenidae). J Comp Physiol A 182: 377–387

    Google Scholar 

  • Warzecha A-K, Egelhaaf M (1996) Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable. Phil Trans Roy Soc Lond B 351: 1579–1591

    Google Scholar 

  • Wüst R (1987) Studien zum Verhalten schwärmender Mücken am Beispiel einer Chaoboridenart(Chaoborus spec.).Diploma Thesis, Universität Tübingen

    Google Scholar 

  • Wylie DRW, Bischof WF, Frost BJ (1998) Common reference frame for neural coding of translational and rotational optic flow. Nature 392: 278–282

    PubMed  CAS  Google Scholar 

  • Zanker JM (1996) Looking at the output of two-dimensional motion detector arrays. Invest Ophthalm Vis Sci 37: 743

    Google Scholar 

  • Zeil J (1986) The territorial flight of male houseflies(Fannia canicularisL.). Behav Ecol Sociobiol 19: 213–219

    Google Scholar 

  • Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in bees and wasps. J Exp Biol 199: 245–252

    PubMed  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks, and the visual world of semi-terrestrial crabs. J Comp Physiol A 159: 801–811

    Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1989) Spatial vision in a flat world: Optical and neural adaptations in Arthropods. In: Singh RN, Strausfel NJ (eds) Neurobiology of sensory systems. Plenum Press, New York, pp 123–137

    Google Scholar 

  • Zeil J, Zanker JM (1997) A glimpse into crabworld. Vision Res 37: 3417–3426

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eckert, M.P., Zeil, J. (2001). Towards an Ecology of Motion Vision. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics