Skip to main content

Real-Time Encoding of Motion: Answerable Questions and Questionable Answers from the Fly’s Visual System

  • Chapter
Motion Vision

Abstract

Much of what we know about the neural processing of sensory information has been learned by studying the responses of single neurones to rather simplified stimuli. The ethologists, however, have argued that we can reveal the full richness of the nervous system only when we study the way in which the brain deals with the more complex stimuli that occur in nature. On the other hand it is possible that the processing of natural signals is decomposable into steps that can be understood from the analysis of simpler signals. But even then, to prove that this is the case one must do the experiment and use complex natural stimuli. In the past decade there has been renewed interest in moving beyond the simple sensory inputs that have been the workhorse of neurophysiology, and a key step in this program has been the development of more powerful tools for the analysis of neural responses to complex dynamic inputs. The motion sensitive neurones of the fly visual system have been an important testing ground for these ideas, and there have been several key results from this work:

1. The sequence of spikes from a motion sensitive neurone can be decoded to recover a continuous estimate of the dynamic velocity trajectory (Bialek et al. 1991; Haag and Borst 1997). In this decoding, individual spikes contribute significantly to the estimate of velocity at each point in time.

2. The precision of velocity estimates approaches the physical limits imposed by diffraction and noise in the photoreceptor array (Bialek et al. 1991).

3. One or two spikes are sufficient to discriminate between motions which differ by displacements in the “hyperacuity” range, an order of magnitude smaller than the spacing between photoreceptors in the retina (de Ruyter van)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland, D (1991) Reading a neural code. Science 252: 1854–1857

    CAS  Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving Macaque monkey. Neural Comp 8: 1185–1202

    Article  CAS  Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94: 5411–5416

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybern 56: 209–215

    Article  Google Scholar 

  • Borst A, Theunissen, FE (1999) Information theory and neural coding. Nature Neurosci 2: 947–957

    Article  PubMed  CAS  Google Scholar 

  • Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck R (2000a) Synergy in a neural code. Neural Comp: in press

    Google Scholar 

  • Brenner N, Bialek W, de Ruyter van Steveninck R (2000b) Adaptive resealing maximizes information transmission. Neuron: in press

    Google Scholar 

  • Bullock TH (1970) The reliability of neurons. J Gen Physiol 55: 565–584

    Article  PubMed  CAS  Google Scholar 

  • Dethier VG (1976) The hungry fly. A physiological study of the behavior associated with feeding. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Egelhaaf M, Warzecha A-K (1999) Encoding of motion in real time by the fly visual system. Curr Opinion Neurobiol 9: 454–460

    Article  CAS  Google Scholar 

  • Field D (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4: 2379–2394

    Article  PubMed  CAS  Google Scholar 

  • Gauck V, Borst A (1999) Spatial response properties of contralateral inhibited lobula plate tangential cells in the fly visual system. J Comp Neurol 406: 51–71

    Article  PubMed  CAS  Google Scholar 

  • Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J Neurosci 17: 4809–4819

    PubMed  CAS  Google Scholar 

  • Haag J, Borst A (1998) Active membrane characteristics and signal encoding in graded potential neurons. J Neurosci 18: 7972–7986

    PubMed  CAS  Google Scholar 

  • Hagiwara S (1954): Analysis of interval fluctuations of the sensory nerve impulse. Jpn J Physiol 4: 234–240

    Article  PubMed  CAS  Google Scholar 

  • van Hateren JH, Schilstra C (1999) Blowfly flight and optic flow II. Head movements during flight. J Exp Biol 202: 1491–1500

    PubMed  Google Scholar 

  • Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta and vision. J Gen Physiol 25: 819–840

    Article  PubMed  CAS  Google Scholar 

  • Jensen, RV (1998) Synchronization of randomly driven nonlinear oscillators. Phys Rev E 58: 6907–6910

    Article  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of Sensory Physiology VIII/6b. Springer, Berlin, Heidelberg, New York, pp 472–592

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behavior of houseflies(Fannia canicularis).A description and analysis. J Comp Physiol 89:331–357

    Article  Google Scholar 

  • Lenting, BPM, Mastebroek HAK, and Zaagman WH (1984) Saturation in a wide-field, direc-tionally selective movement detection system in fly vision. Vision Res 24:1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Lewen GD, Bialek W, de Ruyter van Steveninck RR Neural coding of natural stimulus ensem-bles. submitted

    Google Scholar 

  • Lighthill, MJ (1958) An introduction to Fourier analysis and generalised functions. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • MacKay D, McCulloch WS (1952) The limiting information capacity of a neuronal link. Bull Math Biophys 14: 127–135

    Article  Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron Hl is generated locally and governed by contrast frequency. Proc R Soc Lond B 225: 251–275

    Article  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Miller MI, Mark KE (1992). A statistical study of cochlear nerve discharge patterns in response to complex speech stimuli, J Acoust Soc Am 92: 202–209

    Article  PubMed  CAS  Google Scholar 

  • Newsome WT, Shadlen MN, Zohary E, Britten KH, Movshon JA (1995) Visual motion: linking neuronal activity to psychophysical performance. In: Gazzaniga M (ed) The cognitive neurosciences. MIT Press, Cambridge, MA, pp 401–414

    Google Scholar 

  • Reichardt, W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communication. Wiley, New York, NY, pp 303–317

    Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Part I: A quantitative analysis. Q Rev Biophys 9: 311–375

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Warland D, Bialek W (1993) Coding efficiency and information rates in sensory neurons. Europhys Lett 22: 151–156

    Article  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge, MA

    Google Scholar 

  • Ruderman DL, Bialek W (1994) Statistics of natural images: Scaling in the woods. Phys Rev Lett 73: 14–817

    Article  Google Scholar 

  • de Ruyter van Steveninck RR, Zaagman WH, Mastebroek HAK (1986) Adaptation of transient responses of a movement sensitive neuron in the visual system of the blowflyCalliphora erythrocephala.Biol Cybem 54: 223–236

    Article  Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1988) Real-time performance of a movement sensitive neuron in the blowfly visual system. Proc Roy Soc Lond B 234: 379–414

    Article  Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1995) Reliability and statistical efficiency of a blowfly movement-sensitive neuron. Phil Trans Roy Soc Lond B 348: 321–340

    Article  Google Scholar 

  • de Ruyter van Steveninck RR, Bialek W, Potters M, Carlson RH, Lewen GD (1996) Adaptive movement computation by the blowfly visual system. In: Waltz DL (ed) Natural and artificial parallel computation: Proc Fifth NEC Res Symp, SIAM, Philadelphia, pp 21–41

    Google Scholar 

  • de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275: 1805–1808

    Article  Google Scholar 

  • Schilstra C, van Hateren JH (1998) Stabilizing gaze in flying blowflies. Nature: 395:654

    Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in deter-mining the reliability and precision of spike timing. Neural Comp 10: 1679–1703

    Article  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27: 379–423

    Google Scholar 

  • Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc Roy Soc Lond B 216: 427–459

    Article  CAS  Google Scholar 

  • Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy and information in neural spike trains. Phys Rev Lett 80: 197–200

    Article  CAS  Google Scholar 

  • Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23: 775–785

    Article  PubMed  CAS  Google Scholar 

  • Usrey WM, Reppas JB, Reid RC (1998) Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395: 384–387

    Article  PubMed  CAS  Google Scholar 

  • Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly(Musca domesticaL.). I. Organization of the flight motor. Phil Trans Roy Soc Lond B 312: 527–551

    Article  Google Scholar 

  • Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly(Musca domesticaL.). II Pursuit of targets. Phil Trans Roy Soc Lond B 312: 553–579

    Article  Google Scholar 

  • Wagner H (1986c) Flight performance and visual control of flight of the free-flying housefly(Musca domesticaL.). III. Interactions between angular movement induced by wide-and smallfield stimuli. Phil Trans Roy Soc Lond B 312: 581–595

    Article  Google Scholar 

  • Warland DK, Reinagel P, Meister M (1997) Decoding visual information from a population of retinal ganglion cells. J Neurophysiol 78: 2336–2350

    PubMed  CAS  Google Scholar 

  • Warzecha A-K, Egelhaaf M (1997) How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information? Europ 3 Neurosci 9: 1365–1374

    Article  CAS  Google Scholar 

  • Warzecha A-K, Egelhaaf M (1998) On the performance of biological movement detectors and ideal velocity sensors in the context of optomotor course stabilization. Visual Neurosci 15:113–122

    Article  CAS  Google Scholar 

  • Warzecha A-K, Egelhaaf M (1999) Variability in spike trains during constant and dynamic stimulation. Science 283: 1927–1930

    Article  PubMed  CAS  Google Scholar 

  • Warzecha A-K, Kretzberg J, Egelhaaf M (1998) Temporal precision of the encoding of motion information by visual intemeurons. Curr Biol 8: 359–368

    Article  PubMed  CAS  Google Scholar 

  • Wehrhahn C (1979) Sex-specific differences in the chasing behavior of houseflies(Musca).Biol Cybem 32: 239–241

    Article  Google Scholar 

  • Wehrhahn C, Poggio T, Bülthoff H (1982) Tracking and chasing in houseflies(Musca).An analysis of 3-D flight trajectories. Biol Cybem 45: 123–130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Ruyter van Steveninck, R., Borst, A., Bialek, W. (2001). Real-Time Encoding of Motion: Answerable Questions and Questionable Answers from the Fly’s Visual System. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics