Skip to main content

The Role of Inertial and Visual Mechanisms in the Stabilization of Gaze in Natural and Artificial Systems

  • Chapter
Motion Vision

Abstract

Vision is arguably our premier navigational aid, allowing us to map out and actively explore our surroundings. However, we view the world from a constantly shifting platform and some visual mechanisms function optimally only if the images on the retina are reasonably steady. As we go about our everyday activities, visual and vestibular mechanisms help to stabilize our gaze on particular objects of interest by generating eye movements to offset our head movements. The general picture that has emerged of gaze stabilization in primates during motion is of two vestibulo-ocular reflexes, the RVOR and TVOR, that compensate selectively for rotational and translational disturbances of the head, respectively, each with its own independent visual backup mechanisms. A major objective of this chapter is to review recent work on low-level, pre-attentive mechanisms that operate with ultra-short latencies and are largely independent of conscious perception. Recent advances in the field of robotics and, particularly, in the domain of active vision, provide a complementary view of the uses and associated problems of visuo-inertial integration for the stabilization of gaze. Much like biological systems, robots have to comply with physical constraints imposed by the environment and/or by the need to coordinate their sensori-motor components in an efficient way. In contrast with biological systems, however, the experimental variation of implementation parameters and control strategies allows, among other things, a comparison of the different hypotheses and implementations. The goal of this chapter is to draw parallels between the results from biology and from a robot which uses inertial and visual information to stabilize its cameras/eyes. The Chapter is organized as follows. Section 2 describes the peculiarities of the patterns of retinal motion (optic flow) experienced by an observer moving through the environment. The appropriate compensatory eye movements required to stabilize gaze are described in Section 3, introducing the distinction between vergence and version eye movements. Section 4 describes the main characteristics of the vestibular system from a biological and artificial perspective and the distinction between “rotational” and “translational” components of the vestibulo-ocular reflex (VOR). The magnitude of the eye movements required for complete compensation depends on various kinematic parameters such as the position of the eyes in the head, the inter-ocular distance, as well as the distance to the fixation point. Section 5 deals with the integration of visual and inertial information for gaze stabilization. This Section builds upon the concept of “translational” and “rotational” components of the VOR and highlights the differences between “version” and “vergence” control of compensatory eye movements. In particular the role of the radial component of optical flow in the feed-forward control of eye movements is compared with the feed-back loop mediated by binocular disparity. In Section 6, the contribution of inertial and visual information in gaze stabilization is discussed with reference to the different latencies and processing power required by the two modalities. The advantage of the integration of visual and inertial data is discussed from a biological and robotics perspective in the concluding Section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albright TD (1989) Centrifugal directional bias in the middle temporal visual area (MT) of the macaque. J Vis Neurosci 2: 177–188

    Article  CAS  Google Scholar 

  • Albright TD, Desimone R (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res 65: 582–592

    Article  PubMed  CAS  Google Scholar 

  • Allman JM, Kaas JH (1971) Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res 35: 89–106

    Article  PubMed  CAS  Google Scholar 

  • Bernardino A, Santos-Victor J (1996) Vergence control for robotic heads using log-polar images. Proc of IROS 96, Osaka, Japan, pp 1264–1271

    Google Scholar 

  • Biguer B, Prablanc C (1981) Modulation of the vestibulo-ocular reflex in eye-head orientation as a function of target distance in man. In: Fuchs AF, Becker W (eds) Progress in oculomotor research, Elsevier, Amsterdam, pp 525–530

    Google Scholar 

  • Busettini C, Masson GS, Miles FA (1996b) A role for stereoscopic depth cues in the rapid visual stabilization of the eyes. Nature 380: 342–345

    Article  Google Scholar 

  • Busettini C, Masson GS, Miles FA (1997) Radial optic flow induces vergence eye movements at ultra-short latencies. Nature 390: 512–515

    Article  PubMed  CAS  Google Scholar 

  • Busettini C, Miles FA, Krauzlis RJ (1994a) Short-latency disparity vergence responses in humans. Soc Neurosci Abstr 20: 1403

    Google Scholar 

  • Busettini C, Miles FA, Krauzlis RJ (1996a) Short-latency disparity vergence responses and their dependence on a prior saccadic eye movement. J Neurophysiol 75: 1392–1410

    Google Scholar 

  • Busettini C, Miles FA, Schwarz U (1991) Ocular responses to translation and their dependence on viewing distance. II. Motion of the scene. J Neurophysiol 66: 865–878

    PubMed  CAS  Google Scholar 

  • Busettini C, Miles FA, Schwarz U, Carl JR (1994b) Human ocular responses to translation of the observer and of the scene: dependence on viewing distance. Exp Brain Res 100: 484–494

    Article  CAS  Google Scholar 

  • Bush GA, Miles FA (1996) Short-latency compensatory eye movements associated with a briefperiod of free fall. Exp Brain Res 108: 337–340

    Article  PubMed  CAS  Google Scholar 

  • Capurro C, Panerai F, Sandini G (1996) Vergence and tracking fusing log-polar images. Proc Intern Conf Pattern Recog, Vienna, pp 740–744

    Google Scholar 

  • Capurro C, Panerai F, Sandini G (1997) Dynamic Vergence using log-polar images. Int J Computer Vision 24: 79–94

    Article  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270: 321–344

    PubMed  CAS  Google Scholar 

  • Collewijn H, Erkelens CJ (1990) Binocular eye movements and the perception of depth. In: Kowler E (ed) Eye movements and their role in visual and cognitive process: review of oculomotor research. Elsevier, Amsterdam, pp 213–261

    Google Scholar 

  • Coombs D, Brown C (1993) Real-time binocular smooth pursuit. Int J Computer Vis 11: 147–164 Cowey A (1964) Projection of the retina on to striate and prestriate cortex in the squirrel monkey (Saimiri sciureus). J Neurophysiol: 266–293

    Google Scholar 

  • Crane BT, Viirre ES, Demer JL (1997) The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration. Exp Brain Res: 304–320

    Google Scholar 

  • Daniel M, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159: 203–221

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65: 1329–1345

    Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65:1346–1359

    CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1995) Response of monkey MST neurons to optic flow stimuli with shiftedcenters of motion. J Neurosci 15: 5192–5208

    PubMed  CAS  Google Scholar 

  • van Essen DC, Maunsell JHR, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199: 293–326

    Article  PubMed  Google Scholar 

  • Ferrari F, Nielsen J, Questa P, Sandini G (1995) Space variant imaging. Sensor Rev 15: 17–20

    Article  Google Scholar 

  • Fisher TE, Juday RD (1988) A programmable video image remapper. Proc SPIE Conf Pattern Recog Signal Processing, Orlando, pp 122–128

    Google Scholar 

  • Gellman RS, Carl JR, Miles FA (1990) Short latency ocular-following responses in man. Vis Neurosci 5: 107–122

    Article  PubMed  CAS  Google Scholar 

  • Gianna CC, Gresty MA, Bronstein AM (1997) Eye movements induced by lateral acceleration steps. Effect of visual context and acceleration levels. Exp Brain Res 114: 124–129

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston Goldberg JM, Fernandez C (1975) Responses of peripheral vestibular neurons to angular and linear acceleration in the squirrel monkey. Acta Otolaryngol 80: 101–110

    Google Scholar 

  • Griswold NC, Lee JS, Weiman CFR (1992) Binocular fusion revisited utilizing a log-polar tessellation. Comp Vis Image Proc 92: 421–457

    Google Scholar 

  • Hengstenberg R (1993) Multisensory control in insect oculomotor systems. In: Miles FA, Waliman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 285–298

    Google Scholar 

  • Hine T, Thom F (1987) Compensatory eye movements during active head rotation for near targets: effects of imagination, rapid head oscillation and vergence. Vision Res: 1639–1657

    Google Scholar 

  • Horn BKP (1986) Robot vision. MIT Press, Cambridge, USA

    Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey cortex. Proc Roy Soc Lon: 1–59

    Google Scholar 

  • Kawano K, Inoue Y, Takemura A, Kitama T, Miles FA (1997) A cortically mediated visual stabilization mechanism with ultra-short latency in primates. In: Thier P, Karnath H (eds) Parietal lobe contributions to orientation in 3D space. Springer Verlag, Heidelberg, pp 185–199

    Google Scholar 

  • Kawano K, Shidara M, Watanabe Y, Yamane S (1994) Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol 71: 2305–2324

    PubMed  CAS  Google Scholar 

  • Keller EL, Khan NS (1986) Smooth-pursuit initiation in the presence of a textured background in monkey. Vision Res 26: 943–955

    Article  PubMed  CAS  Google Scholar 

  • Kimmig HG, Miles FA, Schwarz U (1992) Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys. J Neurophysiol 68: 2147–2164

    PubMed  CAS  Google Scholar 

  • Koenderink J, van Doom J (1991) Affine structure from motion. J Opt Soc Am 8: 377–385

    Article  CAS  Google Scholar 

  • Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements.I. Localization and visual properties of neurons. J Neurophysiol 60: 580–603

    PubMed  CAS  Google Scholar 

  • Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71: 1597–1626

    PubMed  CAS  Google Scholar 

  • Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP (1996) Optic flow processing in monkey STS: a theoretical and experimental approach. J Neurosci 16: 6265–6285

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Miles FA, Optican LM, Eighmy BB (1981) Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibuloocular reflex. J Neurophysiol 45: 869–890

    PubMed  CAS  Google Scholar 

  • Masson GS, Busettini C, Miles FA (1997) Vergence eye movements in response to binocular disparity without the perception of depth. Nature 389: 283--286

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JHR, van Essen DC (1983a) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49: 1127–1147

    Google Scholar 

  • Maunsell JHR, van Essen DC (1983b) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol 49: 1148–1167

    Google Scholar 

  • Miles FA (1993) The sensing of rotational and translational optic flow by the primate optokinetic system. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 393–403

    Google Scholar 

  • Miles FA (1995) The sensing of optic flow by the primate optokinetic system. In: Findlay TM, Kentridge RW, Walker R (eds) Eye movement research: mechanism, processes and applications. Elsevier, Amsterdam, pp 47–62

    Chapter  Google Scholar 

  • Miles FA (1997) Visual stabilization of the eyes in primates. Curr Opinion Neurobiol 7: 867–871

    Article  CAS  Google Scholar 

  • Miles FA (1998) The neural processing of 3-D visual information: evidence from eye movements. Eur J Neurosci 10: 811–822

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Busettini C (1992) Ocular compensation for self motion: visual mechanisms. In: Cohen B, Tomko DL, Guedry FE (eds) Sensing and controlling motion: vestibular and sensorimotor function. Ann NY Acad Sci 656, pp 220–232

    Google Scholar 

  • Miles FA., Busettini C, Schwarz U (1992) Ocular responses to linear motion. In: Shimazu H, Shinoda Y (eds) Vestibular and brain stem control of eye, head and body movements. Japan Scientific Societies Press, Tokyo, pp 379–395

    Google Scholar 

  • Miles FA, Kawano K, Optican LM (1986) Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of the visual input. J Neurophysiol: 1321–1354

    Google Scholar 

  • Miles FA, Schwarz U, Busettini C (1991) The parsing of optic flow by the primate oculomotor system. In: Gorea A (ed) Representations of vision: trends and tacit assumptions in vision research. Cambridge University Press, Cambridge, pp 185–199

    Google Scholar 

  • Miles FA, Schwarz U, Busettini C (1992) The decoding of optic flow by the primate optokinetic system. In: Berthoz A, Graf W, Vidal PP (eds) The head-neck sensory-motor system. Oxford Univerity Press, New York, pp 471–478

    Chapter  Google Scholar 

  • Nordlund P, Uhlin T (1995) Closing the loop: pursuing a moving object by a moving observer. Proc 6th Int Conf on Computer Analysis of Images and Patterns, pp 400–407

    Google Scholar 

  • Paige GD (1983) Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. I. Response characteristics in normal animals. J Neurophysiol 49: 134–168

    PubMed  CAS  Google Scholar 

  • Paige GD (1989) The influence of target distance on eye movement responses during verticallinear motion. Exp Brain Res 77: 585–593

    Article  PubMed  CAS  Google Scholar 

  • Paige GD, Tomko DL (1991a) Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J Neurophysiol 65: 1170–1182

    Google Scholar 

  • Paige GD, Tomko DL (1991b) Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations. J Neurophysiol 65: 1183–1196

    Google Scholar 

  • Panerai F, Metta G, Sandini G (2000) Visuo-inertial stabilization in space-variant binocular systems. Robotics and Autonomous Systems 30: 195–214

    Article  Google Scholar 

  • Panerai F, Sandini G (1998) Oculo-motor stabilization reflexes: integration of inertial and visual information. Neural Networks 11: 1191–1204

    Article  PubMed  Google Scholar 

  • Pekel M, Lappe M, Bremmer F, Thiele A, Hoffmann KP (1996) Neuronal responses in the motion pathway of the macaque monkey to natural optic flow stimuli. NeuroReport 7: 884–888

    Article  PubMed  CAS  Google Scholar 

  • Poggio GF (1995) Mechanisms of stereopsis in monkey visual cortex. Cerebral Cortex, 5: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Rojer AS, Schwartz EL (1990) Design considerations for a space-variant visual sensor with complex-logarithmic geometry. Proc 10th ICPR IEEE Comp Soc, Atlantic City, 2: 278–285

    Google Scholar 

  • Roy JP, Wurtz RH (1990) The role of disparity-sensitive cortical neurons in signalling the direc-tion of self-motion. Nature 348: 160–162

    Article  PubMed  CAS  Google Scholar 

  • Roy JP, Komatsu H, Wurtz RH (1992) Disparity sensitivity of neurons in monkey extrastriate area MST. J Neurosci 12: 2478–2492

    PubMed  CAS  Google Scholar 

  • Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6: 145–157

    PubMed  CAS  Google Scholar 

  • Sandini G, Alaerts A, Dierickx B, Ferrari F, Hermans L, Mannucci A, Parmentier B, Questa P, Meynants G, Sheffer D (1998) The project SVAVISCA: a space-variant color CMOS sensor. Bernard, Thierry M (eds) Advanced Focal Plane Arrays and Electronic Cameras II, Zürich, SPIE 3410: 34–45

    Article  Google Scholar 

  • Sandini G, Gandolfo F, Grosso E, Tistarelli M (1993) Vision during action. In: Aloimonos Y (ed) Active perception. Lawrence Erlbaum Associates, London, pp 151–190

    Google Scholar 

  • Sandini G, Tagliasco V (1980) An anthropomorphic retina-like structure for scene analysis. Comp Vis Graphics Image Proc 14: 365–372

    Article  Google Scholar 

  • Schwartz EL (1977) Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol Cybem 25: 181–194

    Article  CAS  Google Scholar 

  • Schwarz U, Busettini C, Miles FA (1989) Ocular responses to linear motion are inversely proportional to viewing distance. Science 245: 1394–1396

    Article  PubMed  CAS  Google Scholar 

  • Schwarz U, Miles FA (1991) Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. J Neurophysiol 66: 851–864

    PubMed  CAS  Google Scholar 

  • Shelhamer M, Merfeld DM, Mendoza JC (1995) Effect of vergence on the gain of the linear vestibulo-ocular reflex. Acta Otolaryngol Suppl 520: 72–76

    Article  PubMed  Google Scholar 

  • Snyder LH, King WM (1992) Effect of viewing distance and location of the axis of head rotation on the monkey’s vestibuloocular reflex. I. Eye movement responses. J Neurophysiol 67: 861–874

    PubMed  CAS  Google Scholar 

  • Tabak S, Collewijn H, Boumans U, van der Steen J (1997) Gain and delay of human vestibuloocular reflexes to oscillation and steps of the head by a reactive torque helmet. I. Normal subjects. Acta Otolaryngol 117: 785–795

    CAS  Google Scholar 

  • Takemura A, Inoue Y, Kawano K, Miles FA (1997) Short-latency discharges in medial superior temporal area of alert monkeys to sudden changes in the horizontal disparity. Soc Neurosci Abstr 23: 1557

    Google Scholar 

  • Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62: 626–641

    PubMed  CAS  Google Scholar 

  • Tanaka K, Fukada Y, Saito H (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62: 642–656

    PubMed  CAS  Google Scholar 

  • Telford L, Seidman SH, Paige GD (1997) Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J Neurophysiol 78: 1775–1790

    PubMed  CAS  Google Scholar 

  • Telford L, Seidman SH, Paige GD (1998) Canal-otolith interactions in the squirrel monkey vestibulo-ocular reflex and the influence of fixation distance. Exp Brain Res: 115–125

    Google Scholar 

  • Tunley H, Young D (1994) First order optical flow from log-polar sampled images. Proc 3rd European Conf Comp Vision (ECCV), Stockholm, pp 132–137

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA,Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Viirre E, Tweed D, Milner K, Vilis T (1986) Re-examination of the gain of the vestibulo-ocularreflex. J Neurophysiol 56: 439–450

    PubMed  CAS  Google Scholar 

  • Weiman CFR, Chaikin G (1979) Logarithmic spiral grids for image processing and display. Comp Graphic and Image Process 11: 197–226

    Article  Google Scholar 

  • Weiman CFR, Juday RD (1990) Tracking algorithms using log-polar mapped image coordinates. Int Conf Intelligent Robots Computer Vision VIII: Algorithms and techniques, Philadelphia, SPIE 1192: 843–853

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandini, G., Panerai, F., Miles, F.A. (2001). The Role of Inertial and Visual Mechanisms in the Stabilization of Gaze in Natural and Artificial Systems. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics