Skip to main content

Physical and Chemical Vapor Deposition and Plasma-assisted Techniques for Coating Titanium

  • Chapter
Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Bioengineering solves problems that confront health professionals in daily practice. Medically-related technical challenges range from complex large-scale diagnostic or managing tools such as NMR tomography and laboratory medicine or hospital information systems, to the design and development of implant devices and materials in a wide range of applications from artificial cardiac valves to plates, screws and joints in orthopaedic or cranio-maxillofacial surgery.

Author of section 10.1 and 10.2

Author of section 10.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chapman BN (1980) Glow Discharge Processes. John Wiley & Sons, New York Chichester Brisbane Toronto Singapore

    Google Scholar 

  2. Thornton JA, Greene JE (1994) Plasmas in deposition processes. In: Bunshah RF (ed) Handbook of Depositon Technologies for Films and Coatings. Noyes Publications, Park Ridge, N.J.,USA

    Google Scholar 

  3. Thornton JA, Penfold AS (1978) In: Vossen JL, Kern W (eds) Thin Film Processes. Academic Press, New York

    Google Scholar 

  4. Butler HS, Kino GS (1963) Phys Fluids 6:1346 ff

    Article  Google Scholar 

  5. Mattox DM (1994) Surface preparation for film and coating deposition processes. In: Bunshah RF (ed) Handbook of Deposition Technologies for Films and Coatings. Noyes Publication, Park Ridge, N. J., USA

    Google Scholar 

  6. Balwanz WW (1978) Plasma cleaning of surfaces. In: Mittal KL (ed) Surface Contamination, Vol. 1. Plenum Press, New York London

    Google Scholar 

  7. Bhushan B (1978) Techniques for removing surface contaminants in thin film deposition. In: Mittal KL (ed) Surface Contamination, Vol. 2. Plenum Press, New York London

    Google Scholar 

  8. Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 35:49–73

    Article  CAS  Google Scholar 

  9. Freller H (1991) Beschichtungen durch Plasma assistierte Dampfphasen Abscheidung. Jahrbuch Oberflächentechnik, Metall-Verlag, Berlin, pp 228–252

    Google Scholar 

  10. Haefer RA (1987) Oberflächen und Dünnschicht-Technologie, Teil 1. In: Ilschner B (ed) WFT Werkstoff-Forschung und Technik 5. Springer, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  11. Suheil MH, Rao GM, Mohan S (1991) Studies on the properties of zirconia films prepared by direct current reactive magnetron sputtering. J Vac Sci Technol A9:2675–2677

    Google Scholar 

  12. Mattox DM (1994) Ion plating. In Bunshah RF (ed) Handbook of Deposition Technologies for Films and Coatings. Noyes Publication, Park Ridge, N. J., USA

    Google Scholar 

  13. Movchan BA, Demchiskin AV (1969) Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium oxide. Fizika Metall 28:653

    CAS  Google Scholar 

  14. Thornton JA (1994) New industries and applications for advanced materials technology. SAMPE 19:443

    Google Scholar 

  15. Bunshah RF (1994) Evaporation: process, bulk, microstructures and mechanical properties. In: Bunshah RF (ed) Handbook of Deposition Technologies for Films and Coatings. Noyes Publication, Park Ridge, N. J., USA

    Google Scholar 

  16. Morrison SR (1984) Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Plenum Press, New York London

    Google Scholar 

  17. Ratner BD, Rosen JJ, Hoffman AS, Scharpen LH (1978) An exca study of surface contaminants on glass substrates for cell adhesion. In: Mittal KL (ed) Surface Contamination, Vol 2. Plenum Press, New York London

    Google Scholar 

  18. Van Wagenen RA, Andrade JD (1989) Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J Colloid Sci 76:305–14

    Google Scholar 

  19. Bockris JOM, Khan SUM (1993) Surface Electrochemistry. Plenum Press, New York London

    Book  Google Scholar 

  20. Thull R, Reuther J (1991) Enossales Zahnimplant. Europäisches Patentamt, Veröffentli-chungsnummer: EP 0 445 667 A2

    Google Scholar 

  21. Thull R (1998) Tissue implant interaction. In Helsen JA, Breme HJ (ed) Metals and Biomaterials. John Wiley & Sons, Chichester New York Weinheim Brisbane Singapore Toronto

    Google Scholar 

  22. Ives M, Brooks JS (1991) Cawley: fundamental studies of the steered arc technique. Surf Coat Technol 49:244–252

    Article  CAS  Google Scholar 

  23. Breme HJ, Barbosa MA, Rocha LA (1998) Adhesion to ceramics. In: Helsen JA, Breme HJ (eds) Metals as Biomaterials. John Wiley & Sons, New York

    Google Scholar 

  24. Jones M, McColl IR, Grant DM, Parker KG, Parker T.L (1999) Haemocompatibility of DLC and TiC-TiN interlayers on titanium. Diamond and Related Materials 8:457–462

    Article  CAS  Google Scholar 

  25. Archer NJ (1981) The plasma assisted CVD of TiC, TiN and TiCxN1_x. Thin Solid Films 80:221–225

    Article  CAS  Google Scholar 

  26. Kaizuka T, Shinriki H, Takeyasu N, Ohta T (1994) Conformal chemical vapour deposition TiN (111) film formation as an underlayer of Al for highly reliable interconnects. Jpn Appl Phys 33:470–474

    Article  Google Scholar 

  27. Jiang C, Goto T, Hirai T (1994) Morphology and preferred orientation of TiN plates by chemical vapour deposition. J Mater Sci 29:669–675

    Article  CAS  Google Scholar 

  28. Cheng HE, Hon MH (1996) Texture formation in titanium nitride films prepared by chemical vapour deposition. J Appl Phys 79(10):8047–8053

    Article  CAS  Google Scholar 

  29. Munz WD, Hofmann D, Hartig K (1982) A high rate sputtering process for the formation of hard friction reducing TiN coatings on tools. Thin Solid Films 96:79–86

    Article  Google Scholar 

  30. Sundgren JE, Johansson BO, Karlsson SE (1983) Mechanisms of reactive sputtering of titanium nitride & titanium carbide I. Influence of process parameters on film composition. Thin Solid Films 105:353–366

    Article  CAS  Google Scholar 

  31. Brat T, Parikh N, Tsai NS, Sinha AK, Poole J, Wickersham C Jr (1987) Characterisation of titanium nitride films sputter deposited from a high purity titanium nitride target. J Vac Sci Technol B 5(6):1741–1747

    Article  CAS  Google Scholar 

  32. Pan A, Greene JE (1982) Interfacial chemistry effects on the adhesion of sputter deposited TiC films to steel substrates. Thin Solid Films 97:79–89

    Article  CAS  Google Scholar 

  33. Goldfarb I, Pelleg J, Zevin L, Croitoru N (1991) Lattice distortion in thin films of IVB metal (Ti, Zr, Hf) nitrides. Thin Solid Films 200:117–127

    Article  CAS  Google Scholar 

  34. Poitevin JM, Lemperiere G, Tardy J (1983) Influence of substrate bias on the composition, structure & electrical properties of reactively sputtered TiN films. Thin Solid Films 97:69–77

    Article  Google Scholar 

  35. Eizenberg M, Murarka SP (1983) Reactively sputtered TiC thin films: preparation and properties. J Appl Phys 54(6):3190–3194

    Article  CAS  Google Scholar 

  36. Roth R, Schubert J, Martin M, Fromm E (1995) Effect of process parameter changes on the composition of magnetron sputtered & evaporated TiN & A1N films measured by UHV in situ techniques. Thin Solid Films 270:320–324

    Article  CAS  Google Scholar 

  37. Richter F, Kupfer H, Giegengack H, Schaarschmidt G, Scholze F, Elstner F, Hecht G (1992) Fundamental mechanisms of titanium nitride formation by d.c. magnetron sputtering. Surf Coat Technol 54/55:338–342

    Google Scholar 

  38. Mumtaz A, Class WH (1982) Colour of titanium nitride prepared by reactive dc magnetron sputtering. J Vac Sci Technol A 20(3):342–345

    Google Scholar 

  39. Manory R (1987) Effects of deposition parameters on structure and composition of reactively sputtered TiNx films. Surface Engineering 3(3):233–238

    CAS  Google Scholar 

  40. Oh UC, Je JH (1993) Effects of strain energy on the preferred orientation of TiN thin films. JApplPhys 3(1):1692–1696

    Article  Google Scholar 

  41. Crummenauer J, Stock HR, Mayr P (1995) Influence of substrate temperature and plasma power density on the properties of PACVD TiN. Materials and Manufacturing Processes 10(6):1267–1276

    Article  CAS  Google Scholar 

  42. Laimer J, Stori H, Rodhammer P (1989) PACVD of titanium nitride in a capacitively coupled radio frequency discharge. J Vac Sci Technol A 7(5):2952–2959

    Article  CAS  Google Scholar 

  43. Laimer J, Stori H, Rodhammer P (1989) PACVD of titanium nitride in a capacitively coupled radio frequency discharge. J Vac Sci Technol A 7(5):2952–2959

    Article  CAS  Google Scholar 

  44. Kobayashi M, DoiY (1978) TiN and TiC coatings on cemented carbide by ion plating. Thin Solid Films 54:67–74

    Article  CAS  Google Scholar 

  45. Jeong JI, Hong JH, Kang JS, Shin HJ, Lee YP (1991) Analysis of TiC & TiN films prepared by an arc induced ion plating. J Vac Sci Technol A 9(5):2618–2622

    Article  CAS  Google Scholar 

  46. Whitmell DS, Williamson R (1976) Deposition of hard surface layers by hydrocarbon cracking in a glow discharge. Thin Solid Films 35:255–261

    Article  CAS  Google Scholar 

  47. Grill A, Patel V (1993) Tribological properties of diamond-like carbon and related materials. Diamond and Related Materials 2:597–605

    Article  CAS  Google Scholar 

  48. Holland L, Ohja SM (1979) Growth of carbon films with random atomic structure from ion impact damage in a hydrocarbon plasma. Thin Solid Films 58:107–116

    Article  CAS  Google Scholar 

  49. Dowling DP, Ahern MJ, Kelly TC, Meenan BJ, Brown NMD, O’Connor GM, Glynn TJ (1992) Characterisation study of diamond and diamond like carbon. Surf Coat Technol 53:177–183

    Article  CAS  Google Scholar 

  50. Bubenzer A, Dischler B, Brandt G, Koidl P (1983) RF plasma deposited amorphous hydro-genated hard carbon thin films: preparation, properties and applications. J Appl Phys 54(8):4590–4595

    Article  CAS  Google Scholar 

  51. Berg S, Andersson LP (1979) DLC films produced in a butane plasma. Thin Solid Films 58:117–120

    Article  CAS  Google Scholar 

  52. Andersson LP, Berg S, Norstrom H, Olaison R (1979) Properties and coating rates of DLC films produced by RF glow discharge of hydrocarbon gases. Thin Solid Films 63:155–160

    Article  CAS  Google Scholar 

  53. Kleber R, Weiler M, Krüger A, Sattel S, Kunz G, Jung K, Ehrhardt H (1993) Influence of ion energy and flux composition on the properties of plasma deposited amorphous carbon and a-C:H films. Diamond and Related Materials 2:246–250

    Article  CAS  Google Scholar 

  54. Nyaiesh AR, Kirby RE, King FK, Garwin EL (1985) New radio frequency technique for deposition of hard carbon films. Journal of Vacuum Science and Technology A 3(3):610–613

    Article  CAS  Google Scholar 

  55. Mutsukura N, Miyatani K (1995) Deposition of DLC films in a CH4-He RF plasma Diamond and Related Materials 4:342–345

    Article  CAS  Google Scholar 

  56. Prince ET, Romach MM (1985) Thin films of hydrogenated amorphous carbon prepared by RF plasma decomposition of CH4. J Vac Sci Technol A 3(3):694–695

    Article  Google Scholar 

  57. Vora H, Moravec TJ (1981) Structural investigation of thin films of DLC. J Appl Phys 52(10):6151–6157

    Article  CAS  Google Scholar 

  58. Natarajan V, Lamb JD, Woollam JA, Liu DC, Gulino A (1985) DLC films: optical absorption, dielectric properties and hardness dependence on deposition parameters. J Vac Sci Technol A 3(3):681–685

    Article  CAS  Google Scholar 

  59. Komath M, Zambare M, Gangal SA, Kulkarni SK (1994) RF PACVD of DLC films from methanol-water vapour mixtures. Diamond and Related Materials 4:15–19

    Article  CAS  Google Scholar 

  60. Pappas DL, Hopwood J (1994) Deposition of diamond like carbon using a radio frequency induction plasma. J Vac Sci Technol A 12(4): 1576–1581

    Article  CAS  Google Scholar 

  61. Roth D, Rau B, Roth S, Mai J (1994) Large area and 3D deposition of DLC flilms for industrial applications. Surf Coat Technol 68/69:783–787

    Article  CAS  Google Scholar 

  62. O’Leary A, Dowling DP, Donnelly K, O’Brien TP, Kelly TC, Weill N, Eloy R (1995) Diamond-like carbon coating for biomedical applications. Key Engineering Materials 99–100:301–308

    Article  Google Scholar 

  63. Franks J, Ng TL, Wright AC (1988) Preparation and characterisation of diamond like carbon films. Vacuum 38(8–10)749–751

    Article  CAS  Google Scholar 

  64. Panwar OS, Sarangi K, Dixit PN, Bhattacharyya R (1995) Diamond like carbon films grown using a saddle field source. J Vac Sci Technol A 13(5):2519–2524

    Article  CAS  Google Scholar 

  65. Scheibe H-J, Drescher D, Kolitsch A, Mensch A (1995) Investigation of surface topography, morphology and structure of amorphous carbon films by AFM and TEM. Fresenius’ J Anal Chem 353:690–694

    Article  CAS  Google Scholar 

  66. Voevodin AA, Capano MA, Safriet AJ, Doonley MS, Zabinski JS (1996) Combined magnetron sputtering and PLD of carbides and DLC films. Appl Phys Lett 69(2):188–190

    Article  CAS  Google Scholar 

  67. Seo SC, Ingram DC, Richardson HH (1995) Effect of substrate bias on the properties of DLC films deposited using unbalanced magnetron sputtering. J Vac Sci Technol A 13(6):2856–2862

    Article  CAS  Google Scholar 

  68. Suzuki J, Okada S (1995) Deposition of DLC films using electron cyclotron resonance PACVD from ethylene gas. Jpn J Appl Phys Part 2, Letters 34(9b):1218–1220

    Article  Google Scholar 

  69. Seo SC, Ingram DC, Richardson HH (1995) Effect of substrate bias on the properties of DLC films deposited using unbalanced magnetron sputtering. J Vac Sci Technol A 13(6):2856–2862

    Article  CAS  Google Scholar 

  70. Mori T, Namba Y (1983) Hard diamond like carbon films deposited by ionised depostion of methane gas. J Vac Sci Technol A l(l):23–27

    Article  Google Scholar 

  71. Cachoncinlle C, Pouvesle JM, Davanloo F, Coogan JJ, Collins CB (1990) Fluorescence of high-pressure argon excited by an energetic flash X-ray source. J Phys D: Appl Phys 23:984–986

    Article  CAS  Google Scholar 

  72. Lossy R, Pappas DL, Roy RA, Cuomo JJ, Sura VM (1992) Filtered arc deposition of amorphous diamond. Appl Phys Lett 61(2):171–173

    Article  CAS  Google Scholar 

  73. Robertson J (1992) Properties of diamond-like carbon. Surf Coat Technol 50:185–203

    Article  CAS  Google Scholar 

  74. Sproul WD (1986) Reactively sputtered nitrides and carbides of titanium, zirconium and hafnium. J Vac Sci Technol A 4(6):2874–2878

    Article  CAS  Google Scholar 

  75. Wittmer M (1985) Properties and microelectronic applications of thin films of refractory metal nitrides. J Vac Sci Technol 3(4): 1797–1803

    Article  CAS  Google Scholar 

  76. Brown JD, Govers MR (1995) Study of titanium nitrogen films deposited in an electron beam evaporation unit. J Vac Sci Technol A 13(5):2328–2335

    Article  CAS  Google Scholar 

  77. Kobayashi M, Doi Y (1978) TiN and TiC coatings on cemented carbide by ion plating. Thin Solid Films 54:67–74

    Article  CAS  Google Scholar 

  78. Kaizuka T, Shinriki H, Takeyasu N, Ohta T (1994) Conformal chemical vapour deposition TiN (111) film formation as an underlayer of Al for highly reliable interconnects. Jpn J Appl Phys 33:470–474

    Article  Google Scholar 

  79. Pelleg J, Zevin LZ, Lungo S, Croitoru N (1991) Reactive sputter deposited TiN films on glass substrates. Thin Solid Films 197:117–128

    Article  CAS  Google Scholar 

  80. Lou HQ, Axen N, Somekh RE, Hutchings IM (1997) Effect of deposition conditions on the characteristics of reactively sputtered TiN films. Surf Coat Technol 90:123–127

    Article  CAS  Google Scholar 

  81. Hoang NH, McKenzie DR, McFall WD, Yin Y (1996) Properties of TiN films deposited at low temperature in a new plasma based deposition system. J Appl Phys 80(11):6279–6285

    Article  CAS  Google Scholar 

  82. Adjaotter AA, Meletis EI, Logothetidis S, Alexandrou I, Kokkou S (1995) Effect of bias on sputer-deposited TiCx, TiNy and TiCxNy thin films. Surf Coat Technol 76–77:142–148

    Article  Google Scholar 

  83. Hoang NH, McKenzie DR, McFall WD, Yin Y (1996) Properties of TiN films deposited at low temperature in a new plasma based deposition system. J Appl Phys 80(11):6279–6285

    Article  CAS  Google Scholar 

  84. Poulek V, Musil J, Valvoda V, Cerny R (1988) Microhardness of Ti-N films containing the Ti2N phase. J Phys D: Appl Phys 21:1657–1658

    Article  CAS  Google Scholar 

  85. Wittmer M (1985) Properties and microelectronic applications of thin films of refractory metal nitrides. J Vac Sci Technol A 3(4): 1797–1803

    Article  CAS  Google Scholar 

  86. Suri AK, Nimmagadda R, Bunshah RF (1980) Synthesis of titanium nitride by activated reactive evaporation. Thin Solid Films 72:529–533

    Article  CAS  Google Scholar 

  87. Elstner F, Ehrlich A, Giegengack H, Kupfer H, Richter F (1994) Structure and properties of titanium nitride thin films deposited at low temperatures using direct current magnetron sputtering. J Vac Sci Technol A 12(2):476–483

    Article  CAS  Google Scholar 

  88. Kobayashi M, DoiY (1978) TiN and TiC coatings on cemented carbide by ion plating. Thin Solid Films 54:67–74

    Article  CAS  Google Scholar 

  89. Bendavid A, Martin PJ, Wang X, Wittling M, Kinder TJ (1995) Deposition & modification of titanium nitride by ion assisted arc deposition. J Vac Sci Technol A 13(3): 1658–1664

    Article  CAS  Google Scholar 

  90. Greene JE, Sundgren J-E, Hultman L, Petrov I, Bergstrom DB (1995) Development of preferred orientation in polycrystalline TiN layers grown by ultra high vacuum reactive magnetron sputtering. Appl Phys Lett 67(20):2928–2930

    Article  CAS  Google Scholar 

  91. Kuzel R Jr, Cerny R, Valvoda V, Blomberg M, Merisalo M, Kadlec S (1995) Complex XRD microstructural studies of hard coatings applied to PVD deposited TiN films: Part II Transition from porous to compact films and microstructural inhomogeneity of the layers. Thin Solid Films 268:72–82

    Article  CAS  Google Scholar 

  92. Quayhaegens C, Knuyt G, Stals LM (1996) Residual macroscopic stress in highly preferrentially oriented titanium nitride coatings deposited on various steel types. J Vac Sci Technol A 14(4):2462–2469

    Article  Google Scholar 

  93. Wengnemair H, Gerlach JW, Preckwinkel U, Stritzker B, Rausenbach B (1996) Photon and ion beam assisted deposition of titanium nitride. Appl Surf Sci 99:313–318

    Article  Google Scholar 

  94. Zhao JP, Wang X, Chen ZY, Yang SQ, Shi TS, Liu X (1997) Effect of film thickness on preferred growth of TiN films during filtered arc deposition. J Mater Sci Lett 16:974–976

    Article  CAS  Google Scholar 

  95. Je JH, Noh DY, Kim HK, Liang KS (1997) Preferred orientation of TiN films by a real time synchrotron x-ray scattering. J Appl Phys 81(9):6126–6133

    Article  CAS  Google Scholar 

  96. Pelleg J, Zevin LZ, Lungo S, Croitoru N (1991) Reactive sputter deposited TiN films on glass substrates. Thin Solid Films 197:117–128

    Article  CAS  Google Scholar 

  97. Greene JE, Sundgren J-E, Hultman L, Petrov I, Bergstrom DB (1995) Development of preferred orientation in polycrystalline TiN layers grown by ultra high vacuum reactive magnetron sputtering. Appl Phys Lett 67(20):2928–2930

    Article  CAS  Google Scholar 

  98. Zeitler M, Gerlach JW, Kraus T, Rauschenbach B (1997) Evolution of texture at growth of titanium nitride films prepared by photon and ion beam assisted deposition. Appl Phys Lett 70(10):1254–1256

    Article  CAS  Google Scholar 

  99. Hultman L, Munz W-D, Musil J, Kadlec S, Petrov I, Greene JE (1991) Low energy ion irradiation during growth of TiN deposited by reactive magnetron sputtering: effects of ion flux on film microstructure. J Vac Sci Technol A 9(3):434–438

    Article  CAS  Google Scholar 

  100. Ensinger W (1997) Low energy ion assist during deposition - an effective tool for controlling thin film microstructure. Nuclear Instruments & Methods in Physics Research B 127/128:796–808

    Article  CAS  Google Scholar 

  101. Mitamura Y, Mikami T, Yuta T, Matsumoto T, Shimooka T, Okamoto E, Eizuka N, Yamaguchi K (1986) Development of a fine ceramic heart valve for use as a cardiac prosthesis. Transactions of the American Society of Artificial Internal Organs 32:444–448

    Article  CAS  Google Scholar 

  102. Mezger PR, Creugers NHJ (1992) Titanium nitride coatings in clinical dentistry. J Dent 20:342–344

    Article  CAS  Google Scholar 

  103. Behrndt H, Lunk A (1991) Biocompatibility of TiN; preclinical & clinical investigations. Mater Sci Eng A 139:58–60

    Article  Google Scholar 

  104. Knotek O, Loffler F, Weitkamp K (1992) Physical vapour deposition coatings for dental prostheses. Surf Coat Technol 54/55:536–540

    Article  Google Scholar 

  105. Kola PV, Daniels S, Cameron DC, Hashmi MSJ (1996) Magnetron sputtering of TiN protective coatings for medical applications. J Mater Process Technol 56:422–430

    Article  Google Scholar 

  106. Wisbey A, Gregson PJ, Tuke M (1987) Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials 8:477–480

    Article  CAS  Google Scholar 

  107. Mishra AK, Davidson JA (1992) Abrasion resistance of candidate coatings for orthopaedic articulating surfaces. Advances in Biomaterials 10:111–121

    Google Scholar 

  108. Grant DM, Lo WJ, Parker KG, Parker TL (1996) Biocompatible and mechanical properties of low temperature deposited quarternary (Ti,A1,V)N coatings on Ti-6A1-4V titanium alloy substrates. J Mater Sci: Mater Med 7:579–584

    Article  CAS  Google Scholar 

  109. Dion I, Bordenave L, Lefebvre E, Bareille R, Baquey Ch, Monties JR, Havlik P (1994) Physico-chemistry and cytotoxicity of ceramics part II: cytotoxicity of ceramics. J Mater Sci: Mater Med 5:18–24

    Article  CAS  Google Scholar 

  110. Allen M, Law F, Rushton N (1994) Effects of DLC coatings on macrophages, fibroblasts and osteoblast-like cells in vitro. Clinical Materials 17:1–10

    Article  CAS  Google Scholar 

  111. Lu L, Jones MW, Wu RLC (1993) DLC as a biological compatible material for cell culture and medical applications. Biomed Mater Eng 3(4):223–228

    CAS  Google Scholar 

  112. Evans AC, Franks J, Revell PJ (1991) Diamond-like carbon applied to bioengineering materials. Medical Device Technology, May, 26–29

    Google Scholar 

  113. Parker TL, Parker KG, McColl IR, Grant DM, Wood JV (1994) Biocompatibility of low temperature diamond-like carbon films: a transmission electron microscopy, scanning electron microscopy and cytotoxicity study. Diamond & Related Materials 3:1120–1123

    Article  CAS  Google Scholar 

  114. Butter R, Allen M, Chandra L, Lettington AH, Rushton N (1995) In vitro studies of DLC coatings with silicon intermediate layer. Diamond & Related Materials 4:857–861

    Article  CAS  Google Scholar 

  115. McColl IR, Grant DM, Green SM, Wood JV, Parker TL, Parker K, Goruppa AA, Braithwaite NStJ (1993) Low temperature plasma-assisted chemical vapour deposition of amorphous carbon films for biomedical polymeric substrates. Diamond & Related Materials 3:83–87

    Article  Google Scholar 

  116. Thompson LA, Law FC, Rushton N, Franks J (1991) Biocompatibility of diamond-like carbon coating. Biomaterials 12:37–40

    Article  Google Scholar 

  117. Grant DM, McColl IR, Golozar MA, Wood JV, Braithwaite NStJ (1992) Plasma assisted CVD for biomedical applications. Diamond & Related Materials 1:727–730

    Article  CAS  Google Scholar 

  118. Olborska A, Swider M, Wolowiec R, Niedzielski A, Rylski A, Mitura S (1994) Amorphous carbon - biomaterial for implant coatings. Diamond & Related Materials 3:899–901

    Article  CAS  Google Scholar 

  119. Mitura E, Mitura S, Niedzielski A, Has Z, Wolowiec R, Jakubowski A, Szmidt J, Sokolowska A, Louda P, Marciniak J, Koczy B (1994) Diamond-like carbon coatings for biomedical applications. Diamond & Related Materials 3:896–898

    Article  CAS  Google Scholar 

  120. Ianno NJ, Dillon RO, Ali A, Ahmad A (1995) Deposition of diamond-like carbon on a titanium biomedical alloy. Thin Solid Films 270:275–278

    Article  CAS  Google Scholar 

  121. Lankford J, Blanchard CR, Agrawal CM, Micallef DM, Dearnaley G, McCabe AR (1993) Adherence of diamondlike carbon coatings on total joint substrate materials. Nuclear Instruments & Methods in Physics Research Sect B - Beam Interactions with Materials & Atoms B80/81:1441–1445

    Article  Google Scholar 

  122. Chandra L, Allen M, Butter R, Rushton N, Lettington AH, Clyne TW (1995) The effect of exposure to biological fluids on the spallation resistance of diamond-like coatings on metallic substrates. J Mater Sci: Mater Med 6:581–589

    Article  CAS  Google Scholar 

  123. McLaughlin J, Meenan B, Maguire P, Jamieson N (1996) Properties of diamond-like carbon thin film coatings on stainless steel medical guidewires. Diamond & Related Materials 5:486–491

    Article  CAS  Google Scholar 

  124. Dion I, Baquey C, Candelon B, Monties JR (1992) Haemocompatibility of titanium nitride. International Journal of Artificial Organs 15(10):617–621

    CAS  Google Scholar 

  125. Dion I, Roques X, Baquey Ch, Baudet E, Basse Cathalinat B, More N (1993) Haemocompatibility of diamond-like carbon coating. Biomed Mater Eng 3:51–55

    CAS  Google Scholar 

  126. Ran JG, Zheng CQ, Yin GF, Lei W (1994) Evaluation of multi factors on blood compatibility of diamond-like carbon films used as AHV’s materials. Transactions of the Materials Research Society of Japan 15A:29–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thull, R., Grant, D. (2001). Physical and Chemical Vapor Deposition and Plasma-assisted Techniques for Coating Titanium. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics