Skip to main content

Solitary Waves, Bound Soliton States and Chaotic Soliton Trains in a Dissipative Boussinesq-Korteweg-de Vries Equation

  • Chapter
Synergetic Phenomena in Active Lattices

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 179 Accesses

Abstract

A solitary wave that, eventually, becomes a soliton represents a unique and very attractive object in modern nonlinear science of spatially extended systems. The term “soliton” was coined by N.J. Zabusky and M.D. Kruskal [2.30] to characterize solitary waves in nonlinear systems whose properties (energy etc.) are mostly localized in a bounded region of space at any instant of time such that upon collision they act like particles (e.g. electron, proton, etc.) and, in the case they studied, elastically, crossing each other or interchanging places with no significant change of form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazin, H., “Recherches experimentales sur la propagation des ondes”, Mém. présentés par divers savants à l’ Acad. Sci. Inst. France (Paris) 19 (1865) 495–644.

    Google Scholar 

  2. Bishop, A. R., Krumhansl, J. A. and Trullinger, S. E., “Solitons in condensed matter: A paradigm”, Physica D 1 (1980) 1–44.

    Article  MathSciNet  ADS  Google Scholar 

  3. Bouasse, H., Houle, Rides, Seiches et Marées (Delagrave, Paris, 1924), pp. 291–292.

    Google Scholar 

  4. Boussinesq, J. V., “Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire”, C. R. Hebd. Séances Acad. Sci. (Paris) 72 (1871) 755–759.

    MATH  Google Scholar 

  5. Boussinesq, J. V., “Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond”, J. Math. Pures Appl. 17 (1872) 55–108.

    Google Scholar 

  6. Boussinesq, J. V., “Essai sur la théorie des eaux courantes”, Mém. présentés par divers savants à l’Acad. Sci. Inst. France (Paris) 23 (1877) 1–680. Additions et éclaircissements au mémoire intitulé (supra), Mém. présentés par divers savants à l’Acad. Sci. Inst. France (Paris) ibidem 24[2] (1878) 1–64.

    Google Scholar 

  7. Christov, C. I. and Velarde, M. G., “Dissipative solitons”, Physica D 86 (1995) 323–347.

    Article  MathSciNet  MATH  Google Scholar 

  8. Christov, C. I., Maugin, G. A. and Velarde, M. G., “Well-posed Boussinesq paradigm with purely spatial higher-order derivatives”, Phys. Rev. E 54 (1996) 3621–3638.

    Article  ADS  Google Scholar 

  9. Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. and Morris, H. C., Solitons and Nonlinear Wave Equations (Academic Press, Inc., 1984).

    Google Scholar 

  10. Drazin, P. G. and Johnson, R. S., Solitons: An Introduction (University Press, Cambridge, 1989).

    Book  MATH  Google Scholar 

  11. Garazo, A. N. and Velarde, M. G., “Dissipative Korteweg-de Vries description of Marangoni-Bénard oscillatory convection”, Phys. Fluids A 3 (1991) 2295–2300.

    Article  ADS  MATH  Google Scholar 

  12. Gardner, P. L., Greene, J. M., Kruskal, M. D. and Miura, R. M., “Method for solving Korteweg-de Vries equation”, Phys. Rev. Lett. 19 (1967) 1095–1097.

    Article  ADS  MATH  Google Scholar 

  13. Kliakhandler, I. L., Porubov, A. V. and Velarde, M. G., “Localized finiteamplitude disiturbances and selection of solitary waves”, Phys. Rev. E 62 (2000) 4959–4962.

    Article  ADS  Google Scholar 

  14. Korteweg, D. J. and de Vries G., “On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves”, Phil. Mag. 39[5] (1895) 422–443.

    MATH  Google Scholar 

  15. Krehl, P. and van der Geest, M., “The discovery of the Mach reflection effect and its demonstration in an auditorium”, Shock Waves 1 (1991) 3–15.

    Article  ADS  Google Scholar 

  16. Linde, H., Chu, X.-L. and Velarde, M. G., “Oblique and head-on collisions of solitary waves in Marangoni-Bénard convection”, Phys. Fluids A 5 (1993) 1068–1070.

    Article  ADS  Google Scholar 

  17. Linde, H., Chu, X.-L., Velarde, M. G. and Waldhelm, W., “Wall reflections of solitary waves in Marangoni-Bénard convection”, Phys. Fluids A 5 (1993) 3162–3166.

    Article  ADS  Google Scholar 

  18. Mach, E. and Wosyka, J., “Über einige mechanische Wirkungen des elektrischen Funkens”, Sitzungsber. Akad. Wiss. Wien 72[II] (1875) 44–52.

    Google Scholar 

  19. Nekorkin, V. I. and Velarde, M. G., “Solitary waves, soliton bound states and chaos in a dissipative Korteweg-de Vries equation”, Int J. Bifurcation Chaos 4 (1994) 1135–1146.

    Article  MathSciNet  MATH  Google Scholar 

  20. Nepomnyashchy, A. A., Velarde, M. G. and Colinet, P., Interfacial Phenomena and Convection (Chapman & Hall/CRC, New York, 2002).

    MATH  Google Scholar 

  21. Newell, A. C., Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985).

    Book  Google Scholar 

  22. Rayleigh, Lord, “On waves”, Phil. Mag. 1 (1876) 257–279.

    MATH  Google Scholar 

  23. Rednikov, A. Y., Velarde, M. G., Ryazantsev, Yu. S., Nepomnyashchy, A. A. and Kurdyumov, V. N., “Cnoidal Wave Trains ans Solitary Waves in a Dissipation-Modified Korteweg-de Vries Equation”, Acta Appl. Math. 39 (1995) 457–475.

    Article  MathSciNet  MATH  Google Scholar 

  24. Remoissenet, M., Waves Called Solitons. Concepts and Experiments, 3rd Edition (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  25. Russell, J.S., “Report on waves”, Rep. 14th Meet. British Ass. Adv. Sci., York, 311–390, (J. Murray, London, 1844).

    Google Scholar 

  26. Russell, J. S., The Wave of Translation in the Oceans of Water, Air and Ether, with Appendix (Trübner, London, 1885).

    Google Scholar 

  27. Ursell, F., “The long-wave paradox in the theory of gravity waves”, Proc. Cambridge Phil. Soc. 49 (1953) 685–694.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Velarde, M. G., Nekorkin, V. I. and Maksimov, A. G., “Further results on the evolution of solitary waves and their bound states of a dissipative Korteweg-de Vries equation”, Int. J. Bifurcation Chaos 5 (1995) 831–839.

    Article  MATH  Google Scholar 

  29. Velarde, M. G., Nepomnyashchy, A. A. and Hennenberg, M., “Onset of oscillatory interfacial instability and wave motions in Bénard layers”, Adv. Appl. Mech. 37 (2000) 167–238.

    Article  Google Scholar 

  30. Zabusky, N. and Kruskal, M. D., “Interaction of’ solitons’ in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett. 15 (1965) 57–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nekorkin, V.I., Velarde, M.G. (2002). Solitary Waves, Bound Soliton States and Chaotic Soliton Trains in a Dissipative Boussinesq-Korteweg-de Vries Equation. In: Synergetic Phenomena in Active Lattices. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56053-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56053-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62725-5

  • Online ISBN: 978-3-642-56053-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics